复合固体推进剂的非线性弛豫特性研究

IF 2.8 3区 工程技术 Q2 MECHANICS
{"title":"复合固体推进剂的非线性弛豫特性研究","authors":"","doi":"10.1016/j.ijnonlinmec.2024.104908","DOIUrl":null,"url":null,"abstract":"<div><p>Under large deformations, the nonlinear relaxation properties of composite solid propellants result in significant prediction deviations. In this study, viscoelastic experiments of solid propellants at variable temperatures are conducted. A method for calculating the equal stress derivative in multi-step relaxation test results is proposed to calibrate the proportional relationship of nonlinear relaxation times. The relaxation times increase monotonically with deformation and exhibit a logarithmic evolution law. Under large deformations, the increase of relaxation times slows down. The nonlinear relaxation times are introduced into the thermo-hyper-viscoelastic constitutive model constructed by the generalized Maxwell model and the eight-chain tube model. After calibrating the constitutive model parameters based on experimental results, the accuracy of the constitutive model is verified through double-step relaxation tests on center-holed samples. The incorporation of the nonlinear relaxation times reduces the prediction deviations of composite solid propellants from 11% to 5%. The nonlinear relaxation properties of solid propellants originate from the nonlinearity of moduli and viscosities. The moduli and viscosities exhibit a pattern of initially increasing and then dropping with deformation. The microscopic mechanism involves the time consumption of rearrangement due to heightened friction following deformation, as well as the fracture of the molecular chain under large deformation. The temperatures reduce relaxation times and viscosities by increasing the extensibility of molecular chains.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on nonlinear relaxation properties of composite solid propellant\",\"authors\":\"\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Under large deformations, the nonlinear relaxation properties of composite solid propellants result in significant prediction deviations. In this study, viscoelastic experiments of solid propellants at variable temperatures are conducted. A method for calculating the equal stress derivative in multi-step relaxation test results is proposed to calibrate the proportional relationship of nonlinear relaxation times. The relaxation times increase monotonically with deformation and exhibit a logarithmic evolution law. Under large deformations, the increase of relaxation times slows down. The nonlinear relaxation times are introduced into the thermo-hyper-viscoelastic constitutive model constructed by the generalized Maxwell model and the eight-chain tube model. After calibrating the constitutive model parameters based on experimental results, the accuracy of the constitutive model is verified through double-step relaxation tests on center-holed samples. The incorporation of the nonlinear relaxation times reduces the prediction deviations of composite solid propellants from 11% to 5%. The nonlinear relaxation properties of solid propellants originate from the nonlinearity of moduli and viscosities. The moduli and viscosities exhibit a pattern of initially increasing and then dropping with deformation. The microscopic mechanism involves the time consumption of rearrangement due to heightened friction following deformation, as well as the fracture of the molecular chain under large deformation. The temperatures reduce relaxation times and viscosities by increasing the extensibility of molecular chains.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002737\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002737","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在大变形情况下,复合固体推进剂的非线性松弛特性会导致预测结果出现重大偏差。本研究对不同温度下的固体推进剂进行了粘弹性实验。提出了计算多步松弛试验结果中等应力导数的方法,以校准非线性松弛时间的比例关系。弛豫时间随变形单调增加,并呈现对数演化规律。在大变形情况下,松弛时间的增长速度减慢。非线性弛豫时间被引入到由广义麦克斯韦模型和八链管模型构建的热超粘弹性构成模型中。在根据实验结果校准构成模型参数后,通过对中心孔样品进行双步松弛试验验证了构成模型的准确性。加入非线性弛豫时间后,复合固体推进剂的预测偏差从 11% 降至 5%。固体推进剂的非线性松弛特性源于模量和粘度的非线性。模量和粘度随着变形呈现出先增大后减小的模式。微观机理包括变形后摩擦力增大导致的重排时间消耗,以及大变形下分子链的断裂。温度通过增加分子链的延展性来缩短弛豫时间和降低粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on nonlinear relaxation properties of composite solid propellant

Under large deformations, the nonlinear relaxation properties of composite solid propellants result in significant prediction deviations. In this study, viscoelastic experiments of solid propellants at variable temperatures are conducted. A method for calculating the equal stress derivative in multi-step relaxation test results is proposed to calibrate the proportional relationship of nonlinear relaxation times. The relaxation times increase monotonically with deformation and exhibit a logarithmic evolution law. Under large deformations, the increase of relaxation times slows down. The nonlinear relaxation times are introduced into the thermo-hyper-viscoelastic constitutive model constructed by the generalized Maxwell model and the eight-chain tube model. After calibrating the constitutive model parameters based on experimental results, the accuracy of the constitutive model is verified through double-step relaxation tests on center-holed samples. The incorporation of the nonlinear relaxation times reduces the prediction deviations of composite solid propellants from 11% to 5%. The nonlinear relaxation properties of solid propellants originate from the nonlinearity of moduli and viscosities. The moduli and viscosities exhibit a pattern of initially increasing and then dropping with deformation. The microscopic mechanism involves the time consumption of rearrangement due to heightened friction following deformation, as well as the fracture of the molecular chain under large deformation. The temperatures reduce relaxation times and viscosities by increasing the extensibility of molecular chains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信