用于设计硅层间耦合结构的 ANNs

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Quan Wang, Yongjie FAN, Xinhui Yang, Ning Huang, Hua Chen, Qing Fang
{"title":"用于设计硅层间耦合结构的 ANNs","authors":"Quan Wang,&nbsp;Yongjie FAN,&nbsp;Xinhui Yang,&nbsp;Ning Huang,&nbsp;Hua Chen,&nbsp;Qing Fang","doi":"10.1016/j.optlastec.2024.111760","DOIUrl":null,"url":null,"abstract":"<div><p>In silicon optical device design, traditional methods are often time-consuming and lack of efficient convergence when directly employing artificial neural networks for inverse design. To address this challenge, we propose an efficient inverse design approach rooted in migration learning for silicon interlayer coupled structures. This method employs Figure of Merit (FOM) screening to preprocess data, followed by training the first Backward Propagation (BP) neural network on the silicon interlayer coupled structure dataset. Subsequently, the learned hyperparameters from the first BP neural network are transferred to the second BP neural network, enhancing the neural network’s accuracy significantly. The results in the mean absolute percentage error (MAPE) for the single-layer and the two-layer coupled-structure neural network can be reduced to 1.2845 % and 7.3409 % in respectively. These findings demonstrate the practical utility of the method in the inverse design of silicon interlayer coupled structures and provide guidance for the design of silicon optical devices.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANNs for design of silicon interlayer coupled structures\",\"authors\":\"Quan Wang,&nbsp;Yongjie FAN,&nbsp;Xinhui Yang,&nbsp;Ning Huang,&nbsp;Hua Chen,&nbsp;Qing Fang\",\"doi\":\"10.1016/j.optlastec.2024.111760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In silicon optical device design, traditional methods are often time-consuming and lack of efficient convergence when directly employing artificial neural networks for inverse design. To address this challenge, we propose an efficient inverse design approach rooted in migration learning for silicon interlayer coupled structures. This method employs Figure of Merit (FOM) screening to preprocess data, followed by training the first Backward Propagation (BP) neural network on the silicon interlayer coupled structure dataset. Subsequently, the learned hyperparameters from the first BP neural network are transferred to the second BP neural network, enhancing the neural network’s accuracy significantly. The results in the mean absolute percentage error (MAPE) for the single-layer and the two-layer coupled-structure neural network can be reduced to 1.2845 % and 7.3409 % in respectively. These findings demonstrate the practical utility of the method in the inverse design of silicon interlayer coupled structures and provide guidance for the design of silicon optical devices.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012180\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012180","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在硅光学器件设计中,直接采用人工神经网络进行逆向设计时,传统方法往往耗时较长,且缺乏有效的收敛性。为了应对这一挑战,我们提出了一种植根于迁移学习的硅层间耦合结构高效逆向设计方法。该方法采用功绩值(FOM)筛选对数据进行预处理,然后在硅层间耦合结构数据集上训练第一个后向传播(BP)神经网络。随后,将第一个 BP 神经网络学习到的超参数转移到第二个 BP 神经网络,从而显著提高神经网络的准确性。单层和双层耦合结构神经网络的平均绝对百分比误差(MAPE)结果可分别降至 1.2845 % 和 7.3409 %。这些发现证明了该方法在硅层间耦合结构逆向设计中的实用性,并为硅光学器件的设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANNs for design of silicon interlayer coupled structures

In silicon optical device design, traditional methods are often time-consuming and lack of efficient convergence when directly employing artificial neural networks for inverse design. To address this challenge, we propose an efficient inverse design approach rooted in migration learning for silicon interlayer coupled structures. This method employs Figure of Merit (FOM) screening to preprocess data, followed by training the first Backward Propagation (BP) neural network on the silicon interlayer coupled structure dataset. Subsequently, the learned hyperparameters from the first BP neural network are transferred to the second BP neural network, enhancing the neural network’s accuracy significantly. The results in the mean absolute percentage error (MAPE) for the single-layer and the two-layer coupled-structure neural network can be reduced to 1.2845 % and 7.3409 % in respectively. These findings demonstrate the practical utility of the method in the inverse design of silicon interlayer coupled structures and provide guidance for the design of silicon optical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信