泛癌症单细胞数据的整合分析揭示了可预测免疫疗法反应的肿瘤生态系统亚型

IF 6.8 1区 医学 Q1 ONCOLOGY
Shengjie Zeng, Liuxun Chen, Jinyu Tian, Zhengxin Liu, Xudong Liu, Haibin Tang, Hao Wu, Chuan Liu
{"title":"泛癌症单细胞数据的整合分析揭示了可预测免疫疗法反应的肿瘤生态系统亚型","authors":"Shengjie Zeng, Liuxun Chen, Jinyu Tian, Zhengxin Liu, Xudong Liu, Haibin Tang, Hao Wu, Chuan Liu","doi":"10.1038/s41698-024-00703-w","DOIUrl":null,"url":null,"abstract":"Tumor ecosystem shapes cancer biology and potentially influence the response to immunotherapy, but there is a lack of direct clinical evidence. In this study, we utilized EcoTyper and publicly available scRNA-Seq cohorts from ICI-treated patients. We found a ecosystem subtype (ecotype) was linked to improved responses to immunotherapy. Then, a novel immunotherapy-responsive ecotype signature (IRE.Sig) was established and validated through the analysis of pan-cancer data. Utilizing IRE.Sig, machine learning models successfully predicted ICI responses in both validation and testing cohorts, achieving area under the curve (AUC) values of 0.72 and 0.71, respectively. Furthermore, using 5 CRISPR screening cohorts, we identified several potential drugs that may augment the efficacy of ICI. We also elucidated the candidate cellular biomarkers of response to the combined treatment of pembrolizumab plus eribulin in breast cancer. This signature has the potential to serve as a valuable tool for patients in selecting appropriate immunotherapy treatments.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00703-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrative analysis of pan-cancer single-cell data reveals a tumor ecosystem subtype predicting immunotherapy response\",\"authors\":\"Shengjie Zeng, Liuxun Chen, Jinyu Tian, Zhengxin Liu, Xudong Liu, Haibin Tang, Hao Wu, Chuan Liu\",\"doi\":\"10.1038/s41698-024-00703-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumor ecosystem shapes cancer biology and potentially influence the response to immunotherapy, but there is a lack of direct clinical evidence. In this study, we utilized EcoTyper and publicly available scRNA-Seq cohorts from ICI-treated patients. We found a ecosystem subtype (ecotype) was linked to improved responses to immunotherapy. Then, a novel immunotherapy-responsive ecotype signature (IRE.Sig) was established and validated through the analysis of pan-cancer data. Utilizing IRE.Sig, machine learning models successfully predicted ICI responses in both validation and testing cohorts, achieving area under the curve (AUC) values of 0.72 and 0.71, respectively. Furthermore, using 5 CRISPR screening cohorts, we identified several potential drugs that may augment the efficacy of ICI. We also elucidated the candidate cellular biomarkers of response to the combined treatment of pembrolizumab plus eribulin in breast cancer. This signature has the potential to serve as a valuable tool for patients in selecting appropriate immunotherapy treatments.\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41698-024-00703-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41698-024-00703-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00703-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤生态系统塑造了癌症生物学,并可能影响对免疫疗法的反应,但目前还缺乏直接的临床证据。在这项研究中,我们利用了 EcoTyper 和来自 ICI 治疗患者的公开 scRNA-Seq 队列。我们发现一种生态系统亚型(ecotype)与免疫疗法反应的改善有关。然后,通过对泛癌数据的分析,我们建立并验证了一种新的免疫治疗反应生态型特征(IRE.Sig)。利用IRE.Sig,机器学习模型成功预测了验证组和测试组的ICI反应,曲线下面积(AUC)值分别达到0.72和0.71。此外,利用 5 个 CRISPR 筛选队列,我们发现了几种可能增强 ICI 疗效的潜在药物。我们还阐明了乳腺癌患者对pembrolizumab加艾瑞布林联合治疗反应的候选细胞生物标志物。这一特征有可能成为患者选择适当免疫疗法的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrative analysis of pan-cancer single-cell data reveals a tumor ecosystem subtype predicting immunotherapy response

Integrative analysis of pan-cancer single-cell data reveals a tumor ecosystem subtype predicting immunotherapy response
Tumor ecosystem shapes cancer biology and potentially influence the response to immunotherapy, but there is a lack of direct clinical evidence. In this study, we utilized EcoTyper and publicly available scRNA-Seq cohorts from ICI-treated patients. We found a ecosystem subtype (ecotype) was linked to improved responses to immunotherapy. Then, a novel immunotherapy-responsive ecotype signature (IRE.Sig) was established and validated through the analysis of pan-cancer data. Utilizing IRE.Sig, machine learning models successfully predicted ICI responses in both validation and testing cohorts, achieving area under the curve (AUC) values of 0.72 and 0.71, respectively. Furthermore, using 5 CRISPR screening cohorts, we identified several potential drugs that may augment the efficacy of ICI. We also elucidated the candidate cellular biomarkers of response to the combined treatment of pembrolizumab plus eribulin in breast cancer. This signature has the potential to serve as a valuable tool for patients in selecting appropriate immunotherapy treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信