NeuroRF FarmSense:物联网推动精准农业变革,实现卓越作物护理

Tarun Vats , Shrey Mehra , Uday Madan , Amit Chhabra , Akashdeep Sharma , Kunal Chhabra , Sarabjeet Singh , Utkarsh Chauhan
{"title":"NeuroRF FarmSense:物联网推动精准农业变革,实现卓越作物护理","authors":"Tarun Vats ,&nbsp;Shrey Mehra ,&nbsp;Uday Madan ,&nbsp;Amit Chhabra ,&nbsp;Akashdeep Sharma ,&nbsp;Kunal Chhabra ,&nbsp;Sarabjeet Singh ,&nbsp;Utkarsh Chauhan","doi":"10.1016/j.ijcce.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>In light of the ongoing global hunger crisis, it is imperative to improve food production in accordance with Sustainable Development Goal 2.0, which aims to eliminate hunger while promoting sustainable agricultural practices. This research presents a novel Internet of Things (IoT)-driven crop management system, NeuroRF FarmSense, specifically designed for precision agriculture. By utilizing soil sensors and a robust IoT framework, this system enables effective data collection across vast and remote agricultural areas. The study utilizes an extensive Crop Recommendation Dataset obtained from Kaggle, which includes 2,200 entries and seven critical attributes essential for crop selection: phosphorus, humidity, potassium, temperature, nitrogen, pH, and rainfall. This dataset provides a detailed methodology for crop recommendations, revealing more than 22 alternative crops based on varying characteristics. For agricultural forecasting, the NeuroRF FarmSense system employs the NeuroRF Classifier, which integrates neural networks (NN) with the Random Forest Classifier, achieving an unprecedented accuracy of 99.82%, exceeding prior records. This integrative approach harnesses the advantages of NN’s ReLU activation and dropout regularization alongside the robustness of RF. By utilizing NN predictions as input features for RF training and refining RF through grid search with cross-validation, the ensemble model produces highly precise predictions, facilitating strategic crop cultivation for optimal yields across diverse environmental conditions. This innovative methodology signifies a strong solution for classification challenges in precision agriculture. By merging IoT technology with machine learning algorithms, smart farming is poised to enter a transformative phase, providing a scalable response to the pressing issues of global food security. This research aspires to advance precision agriculture in harmony with global sustainability objectives.</p></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"5 ","pages":"Pages 425-435"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666307424000330/pdfft?md5=7ff194a6519af25daa7963c696f01eef&pid=1-s2.0-S2666307424000330-main.pdf","citationCount":"0","resultStr":"{\"title\":\"NeuroRF FarmSense: IoT-fueled precision agriculture transformed for superior crop care\",\"authors\":\"Tarun Vats ,&nbsp;Shrey Mehra ,&nbsp;Uday Madan ,&nbsp;Amit Chhabra ,&nbsp;Akashdeep Sharma ,&nbsp;Kunal Chhabra ,&nbsp;Sarabjeet Singh ,&nbsp;Utkarsh Chauhan\",\"doi\":\"10.1016/j.ijcce.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In light of the ongoing global hunger crisis, it is imperative to improve food production in accordance with Sustainable Development Goal 2.0, which aims to eliminate hunger while promoting sustainable agricultural practices. This research presents a novel Internet of Things (IoT)-driven crop management system, NeuroRF FarmSense, specifically designed for precision agriculture. By utilizing soil sensors and a robust IoT framework, this system enables effective data collection across vast and remote agricultural areas. The study utilizes an extensive Crop Recommendation Dataset obtained from Kaggle, which includes 2,200 entries and seven critical attributes essential for crop selection: phosphorus, humidity, potassium, temperature, nitrogen, pH, and rainfall. This dataset provides a detailed methodology for crop recommendations, revealing more than 22 alternative crops based on varying characteristics. For agricultural forecasting, the NeuroRF FarmSense system employs the NeuroRF Classifier, which integrates neural networks (NN) with the Random Forest Classifier, achieving an unprecedented accuracy of 99.82%, exceeding prior records. This integrative approach harnesses the advantages of NN’s ReLU activation and dropout regularization alongside the robustness of RF. By utilizing NN predictions as input features for RF training and refining RF through grid search with cross-validation, the ensemble model produces highly precise predictions, facilitating strategic crop cultivation for optimal yields across diverse environmental conditions. This innovative methodology signifies a strong solution for classification challenges in precision agriculture. By merging IoT technology with machine learning algorithms, smart farming is poised to enter a transformative phase, providing a scalable response to the pressing issues of global food security. This research aspires to advance precision agriculture in harmony with global sustainability objectives.</p></div>\",\"PeriodicalId\":100694,\"journal\":{\"name\":\"International Journal of Cognitive Computing in Engineering\",\"volume\":\"5 \",\"pages\":\"Pages 425-435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666307424000330/pdfft?md5=7ff194a6519af25daa7963c696f01eef&pid=1-s2.0-S2666307424000330-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Computing in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666307424000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307424000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于当前的全球饥饿危机,当务之急是按照可持续发展目标 2.0 提高粮食产量,该目标旨在消除饥饿,同时促进可持续农业实践。本研究提出了一种新颖的物联网(IoT)驱动的作物管理系统 NeuroRF FarmSense,专门用于精准农业。通过利用土壤传感器和强大的物联网框架,该系统可在广袤而偏远的农业地区有效收集数据。该研究利用了从 Kaggle 获得的大量作物推荐数据集,其中包括 2,200 个条目和作物选择所必需的七个关键属性:磷、湿度、钾、温度、氮、pH 值和降雨量。该数据集提供了详细的作物推荐方法,揭示了基于不同特征的 22 种以上的备选作物。在农业预测方面,NeuroRF FarmSense 系统采用了神经网络(NN)与随机森林分类器相结合的 NeuroRF 分类器,准确率达到前所未有的 99.82%,超过了以往的记录。这种集成方法利用了 NN 的 ReLU 激活和 dropout 正则化以及 RF 的鲁棒性等优势。通过利用 NN 预测作为 RF 训练的输入特征,并通过网格搜索和交叉验证来完善 RF,该集合模型产生了高度精确的预测,有助于在不同环境条件下进行作物栽培战略,以获得最佳产量。这一创新方法是应对精准农业分类挑战的有力解决方案。通过将物联网技术与机器学习算法相结合,智能农业有望进入转型阶段,为解决全球粮食安全的紧迫问题提供可扩展的对策。这项研究旨在推进精准农业,实现全球可持续发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NeuroRF FarmSense: IoT-fueled precision agriculture transformed for superior crop care

In light of the ongoing global hunger crisis, it is imperative to improve food production in accordance with Sustainable Development Goal 2.0, which aims to eliminate hunger while promoting sustainable agricultural practices. This research presents a novel Internet of Things (IoT)-driven crop management system, NeuroRF FarmSense, specifically designed for precision agriculture. By utilizing soil sensors and a robust IoT framework, this system enables effective data collection across vast and remote agricultural areas. The study utilizes an extensive Crop Recommendation Dataset obtained from Kaggle, which includes 2,200 entries and seven critical attributes essential for crop selection: phosphorus, humidity, potassium, temperature, nitrogen, pH, and rainfall. This dataset provides a detailed methodology for crop recommendations, revealing more than 22 alternative crops based on varying characteristics. For agricultural forecasting, the NeuroRF FarmSense system employs the NeuroRF Classifier, which integrates neural networks (NN) with the Random Forest Classifier, achieving an unprecedented accuracy of 99.82%, exceeding prior records. This integrative approach harnesses the advantages of NN’s ReLU activation and dropout regularization alongside the robustness of RF. By utilizing NN predictions as input features for RF training and refining RF through grid search with cross-validation, the ensemble model produces highly precise predictions, facilitating strategic crop cultivation for optimal yields across diverse environmental conditions. This innovative methodology signifies a strong solution for classification challenges in precision agriculture. By merging IoT technology with machine learning algorithms, smart farming is poised to enter a transformative phase, providing a scalable response to the pressing issues of global food security. This research aspires to advance precision agriculture in harmony with global sustainability objectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信