低温对不同温度下挤压成型的 AZ61 镁合金强化机制的影响

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"低温对不同温度下挤压成型的 AZ61 镁合金强化机制的影响","authors":"","doi":"10.1016/j.jmrt.2024.09.068","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the influence of extrusion and deformation temperatures on the mechanical properties of the AZ61 Mg alloy. Increasing the extrusion temperature from 300 to 400 °C led to larger grain size and higher basal texture intensity. At 400 °C, the AZ61 alloy exhibited more Al–Mn phases and fewer Mg<sub>17</sub>Al<sub>12</sub> phases, indicating enhanced dissolution of Mg<sub>17</sub>Al<sub>12</sub> in the α-Mg matrix. Uniaxial tensile tests were conducted at room temperature (RT) and cryogenic temperature (CT, −150 °C). Despite grain growth, a higher yield strength (YS) was achieved at higher extrusion temperatures due to the texture-strengthening mechanism. However, during deformation at CT, the higher YS was primarily attributed to the formation of multiple twinning within individual grains, causing twinning interactions. These twin-interacting boundaries create additional barriers to dislocation movement. Notably, the AZ61 sample extruded at 400 °C demonstrated the formation of stacking faults during deformation at CT, with dislocations accumulating around the faults. This contributed to the best strength without compromising ductility in this sample.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020738/pdfft?md5=7c125b699f14e339e273d041769c68e3&pid=1-s2.0-S2238785424020738-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of cryogenic temperature on the strengthening mechanisms of AZ61 Mg alloy extruded at different temperatures\",\"authors\":\"\",\"doi\":\"10.1016/j.jmrt.2024.09.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the influence of extrusion and deformation temperatures on the mechanical properties of the AZ61 Mg alloy. Increasing the extrusion temperature from 300 to 400 °C led to larger grain size and higher basal texture intensity. At 400 °C, the AZ61 alloy exhibited more Al–Mn phases and fewer Mg<sub>17</sub>Al<sub>12</sub> phases, indicating enhanced dissolution of Mg<sub>17</sub>Al<sub>12</sub> in the α-Mg matrix. Uniaxial tensile tests were conducted at room temperature (RT) and cryogenic temperature (CT, −150 °C). Despite grain growth, a higher yield strength (YS) was achieved at higher extrusion temperatures due to the texture-strengthening mechanism. However, during deformation at CT, the higher YS was primarily attributed to the formation of multiple twinning within individual grains, causing twinning interactions. These twin-interacting boundaries create additional barriers to dislocation movement. Notably, the AZ61 sample extruded at 400 °C demonstrated the formation of stacking faults during deformation at CT, with dislocations accumulating around the faults. This contributed to the best strength without compromising ductility in this sample.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020738/pdfft?md5=7c125b699f14e339e273d041769c68e3&pid=1-s2.0-S2238785424020738-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020738\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020738","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了挤压和变形温度对 AZ61 镁合金机械性能的影响。将挤压温度从 300°C 提高到 400°C,可使晶粒尺寸增大,基底纹理强度提高。400 °C时,AZ61合金显示出更多的Al-Mn相和更少的Mg17Al12相,这表明α-镁基体中Mg17Al12的溶解增强。在室温(RT)和低温(CT,-150 °C)下进行了单轴拉伸试验。尽管存在晶粒生长,但由于质地强化机制,在较高的挤压温度下获得了较高的屈服强度(YS)。然而,在 CT 变形过程中,较高的 YS 主要归因于单个晶粒内形成了多个孪晶,导致孪晶相互作用。这些孪晶相互作用边界为位错运动提供了额外的障碍。值得注意的是,在 400 °C 下挤压的 AZ61 样品在 CT 变形过程中形成了堆积断层,位错在断层周围聚集。这使得该样品在不影响延展性的情况下获得了最佳强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of cryogenic temperature on the strengthening mechanisms of AZ61 Mg alloy extruded at different temperatures

This study investigates the influence of extrusion and deformation temperatures on the mechanical properties of the AZ61 Mg alloy. Increasing the extrusion temperature from 300 to 400 °C led to larger grain size and higher basal texture intensity. At 400 °C, the AZ61 alloy exhibited more Al–Mn phases and fewer Mg17Al12 phases, indicating enhanced dissolution of Mg17Al12 in the α-Mg matrix. Uniaxial tensile tests were conducted at room temperature (RT) and cryogenic temperature (CT, −150 °C). Despite grain growth, a higher yield strength (YS) was achieved at higher extrusion temperatures due to the texture-strengthening mechanism. However, during deformation at CT, the higher YS was primarily attributed to the formation of multiple twinning within individual grains, causing twinning interactions. These twin-interacting boundaries create additional barriers to dislocation movement. Notably, the AZ61 sample extruded at 400 °C demonstrated the formation of stacking faults during deformation at CT, with dislocations accumulating around the faults. This contributed to the best strength without compromising ductility in this sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信