提高结构的抗震性能:混合型被动消能装置综述

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"提高结构的抗震性能:混合型被动消能装置综述","authors":"","doi":"10.1016/j.istruc.2024.107223","DOIUrl":null,"url":null,"abstract":"<div><p>When an earthquake occurs, a substantial amount of elastic strain energy is released, and its intensity is typically measured by Peak Ground Acceleration (PGA). Installing dampers in buildings is a recognized method for dissipating this energy. Passive energy dissipation devices perform effectively under both high and low PGA conditions. Hybrid dampers combine two or more devices into a single unit and are designed to overcome individual weaknesses and enhance overall strength. This study provides a comprehensive review of hybrid passive energy-dissipating devices, emphasizing their crucial role in enhancing the seismic performance of structures. Hybrid dampers are instrumental in reducing roof displacement, drift, inter-story movement, floor acceleration, and base shear, thus significantly improving seismic resilience. The review also outlines various types of devices that are combined to create hybrid dampers, highlighting their importance in ongoing research. Despite numerous numerical analyses and experimental tests, research into implementing hybrid dampers in concrete structures remains limited. Consequently, there is a significant opportunity for improvement, design, development, and implementation of hybrid damping devices in buildings. These devices offer superior vibration control characteristics, making them an attractive option for enhancing the overall structural stability of structures.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing seismic performance of structures: A comprehensive review of hybrid passive energy dissipation devices\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When an earthquake occurs, a substantial amount of elastic strain energy is released, and its intensity is typically measured by Peak Ground Acceleration (PGA). Installing dampers in buildings is a recognized method for dissipating this energy. Passive energy dissipation devices perform effectively under both high and low PGA conditions. Hybrid dampers combine two or more devices into a single unit and are designed to overcome individual weaknesses and enhance overall strength. This study provides a comprehensive review of hybrid passive energy-dissipating devices, emphasizing their crucial role in enhancing the seismic performance of structures. Hybrid dampers are instrumental in reducing roof displacement, drift, inter-story movement, floor acceleration, and base shear, thus significantly improving seismic resilience. The review also outlines various types of devices that are combined to create hybrid dampers, highlighting their importance in ongoing research. Despite numerous numerical analyses and experimental tests, research into implementing hybrid dampers in concrete structures remains limited. Consequently, there is a significant opportunity for improvement, design, development, and implementation of hybrid damping devices in buildings. These devices offer superior vibration control characteristics, making them an attractive option for enhancing the overall structural stability of structures.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424013754\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424013754","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

地震发生时,会释放出大量的弹性应变能,其强度通常用峰值地面加速度 (PGA) 来衡量。在建筑物中安装阻尼器是一种公认的消散这种能量的方法。被动消能装置在峰值地面加速度较高和较低的情况下都能有效发挥作用。混合阻尼器将两个或更多装置组合成一个单元,旨在克服单个装置的弱点并增强整体强度。本研究全面回顾了混合型被动消能装置,强调了它们在提高结构抗震性能方面的关键作用。混合阻尼器有助于减少屋顶位移、漂移、层间位移、楼层加速度和基底剪力,从而显著提高抗震能力。综述还概述了组合成混合阻尼器的各种类型的装置,强调了它们在当前研究中的重要性。尽管进行了大量的数值分析和实验测试,但在混凝土结构中实施混合阻尼器的研究仍然有限。因此,在建筑物中改进、设计、开发和实施混合阻尼装置的机会很大。这些装置具有卓越的振动控制特性,使其成为增强结构整体稳定性的一个极具吸引力的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing seismic performance of structures: A comprehensive review of hybrid passive energy dissipation devices

When an earthquake occurs, a substantial amount of elastic strain energy is released, and its intensity is typically measured by Peak Ground Acceleration (PGA). Installing dampers in buildings is a recognized method for dissipating this energy. Passive energy dissipation devices perform effectively under both high and low PGA conditions. Hybrid dampers combine two or more devices into a single unit and are designed to overcome individual weaknesses and enhance overall strength. This study provides a comprehensive review of hybrid passive energy-dissipating devices, emphasizing their crucial role in enhancing the seismic performance of structures. Hybrid dampers are instrumental in reducing roof displacement, drift, inter-story movement, floor acceleration, and base shear, thus significantly improving seismic resilience. The review also outlines various types of devices that are combined to create hybrid dampers, highlighting their importance in ongoing research. Despite numerous numerical analyses and experimental tests, research into implementing hybrid dampers in concrete structures remains limited. Consequently, there is a significant opportunity for improvement, design, development, and implementation of hybrid damping devices in buildings. These devices offer superior vibration control characteristics, making them an attractive option for enhancing the overall structural stability of structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信