使用混合兰克-高斯 PSO 算法和 ANN 预测并优化 WAAM 组件的表面波浪度

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"使用混合兰克-高斯 PSO 算法和 ANN 预测并优化 WAAM 组件的表面波浪度","authors":"","doi":"10.1016/j.istruc.2024.107247","DOIUrl":null,"url":null,"abstract":"<div><p>Surface waviness is crucial for the quality of components produced via the wire and arc additive manufacturing (WAAM) process. This study presents a novel method for predicting surface waviness, employing an advanced model to optimize process parameter configurations using a combination of Rank-Gaussian particle swarm optimization (RGPSO) and an Artificial Neural Network (ANN). The novelty of this process is that the RGPSO not only optimizes the hyperparameters of the ANN model to enhance prediction performance, but also addresses surface waviness optimization. The RGPSO algorithm's optimization performance is evaluated using 23 benchmark functions, demonstrating competitiveness against nine comparative meta-heuristic algorithms. Experimental data on surface waviness from the literature are utilized to train, test and validate three different prediction models, including a standalone ANN model, a PSO optimized ANN (PSO-ANN) model, and an RGPSO optimized ANN (RGPSO-ANN) model. The results indicate that the developed RGPSO-ANN model achieves the highest accuracy in terms of the metrics <span><math><mi>RMSE</mi></math></span> (0.019), <span><math><mi>R</mi></math></span> (0.996), <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mfenced><mrow><mn>0.990</mn></mrow></mfenced></mrow><mo>,</mo><mspace></mspace><mi>MAE</mi></mrow></math></span> (0.013), <span><math><mrow><mi>RMSLE</mi><mrow><mfenced><mrow><mn>0.013</mn></mrow></mfenced></mrow><mo>,</mo><mspace></mspace></mrow></math></span>and <span><math><mi>MAPE</mi></math></span> (3.46 %). It performs better than the PSO-ANN model (<span><math><mi>RMSE</mi></math></span> 0.026, <span><math><mi>R</mi></math></span> 0.975, <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mn>0.982</mn><mo>,</mo></mrow></math></span> <span><math><mi>MAE</mi></math></span> 0.019, <span><math><mrow><mi>RMSLE</mi><mspace></mspace></mrow></math></span>0.019<span><math><mrow><mo>,</mo><mi>a</mi></mrow></math></span>nd <span><math><mi>MAPE</mi></math></span> 5.73 %), and better than the ANN (<span><math><mi>RMSE</mi></math></span> 0.046, <span><math><mrow><mi>R</mi><mspace></mspace></mrow></math></span>0.991, <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mn>0.944</mn><mo>,</mo></mrow></math></span> <span><math><mi>MAE</mi></math></span> 0.034, <span><math><mrow><mi>RMSLE</mi><mn>0.032</mn></mrow></math></span> and <span><math><mi>MAPE</mi></math></span> 9.31 %). The RGPSO, PSO and other optimization algorithms are then applied to minimize the surface waviness of a WAAM component. RGPSO achieved the optimal value (0.1631 mm), which corresponds to a 12.6 % reduction compared to the best value obtained using PSO.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction and optimization of surface waviness of WAAM components using a hybrid Rank-Gaussian PSO algorithm and ANN\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface waviness is crucial for the quality of components produced via the wire and arc additive manufacturing (WAAM) process. This study presents a novel method for predicting surface waviness, employing an advanced model to optimize process parameter configurations using a combination of Rank-Gaussian particle swarm optimization (RGPSO) and an Artificial Neural Network (ANN). The novelty of this process is that the RGPSO not only optimizes the hyperparameters of the ANN model to enhance prediction performance, but also addresses surface waviness optimization. The RGPSO algorithm's optimization performance is evaluated using 23 benchmark functions, demonstrating competitiveness against nine comparative meta-heuristic algorithms. Experimental data on surface waviness from the literature are utilized to train, test and validate three different prediction models, including a standalone ANN model, a PSO optimized ANN (PSO-ANN) model, and an RGPSO optimized ANN (RGPSO-ANN) model. The results indicate that the developed RGPSO-ANN model achieves the highest accuracy in terms of the metrics <span><math><mi>RMSE</mi></math></span> (0.019), <span><math><mi>R</mi></math></span> (0.996), <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mfenced><mrow><mn>0.990</mn></mrow></mfenced></mrow><mo>,</mo><mspace></mspace><mi>MAE</mi></mrow></math></span> (0.013), <span><math><mrow><mi>RMSLE</mi><mrow><mfenced><mrow><mn>0.013</mn></mrow></mfenced></mrow><mo>,</mo><mspace></mspace></mrow></math></span>and <span><math><mi>MAPE</mi></math></span> (3.46 %). It performs better than the PSO-ANN model (<span><math><mi>RMSE</mi></math></span> 0.026, <span><math><mi>R</mi></math></span> 0.975, <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mn>0.982</mn><mo>,</mo></mrow></math></span> <span><math><mi>MAE</mi></math></span> 0.019, <span><math><mrow><mi>RMSLE</mi><mspace></mspace></mrow></math></span>0.019<span><math><mrow><mo>,</mo><mi>a</mi></mrow></math></span>nd <span><math><mi>MAPE</mi></math></span> 5.73 %), and better than the ANN (<span><math><mi>RMSE</mi></math></span> 0.046, <span><math><mrow><mi>R</mi><mspace></mspace></mrow></math></span>0.991, <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mn>0.944</mn><mo>,</mo></mrow></math></span> <span><math><mi>MAE</mi></math></span> 0.034, <span><math><mrow><mi>RMSLE</mi><mn>0.032</mn></mrow></math></span> and <span><math><mi>MAPE</mi></math></span> 9.31 %). The RGPSO, PSO and other optimization algorithms are then applied to minimize the surface waviness of a WAAM component. RGPSO achieved the optimal value (0.1631 mm), which corresponds to a 12.6 % reduction compared to the best value obtained using PSO.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424013997\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424013997","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

表面波浪度对线材和电弧增材制造(WAAM)工艺生产的部件质量至关重要。本研究提出了一种预测表面波浪度的新方法,该方法采用了一种先进的模型,结合兰克-高斯粒子群优化(RGPSO)和人工神经网络(ANN)来优化工艺参数配置。这一过程的新颖之处在于,RGPSO 不仅优化了人工神经网络模型的超参数以提高预测性能,而且还解决了表面粗糙度优化问题。我们使用 23 个基准函数对 RGPSO 算法的优化性能进行了评估,结果显示该算法在与九种元启发式算法的比较中具有竞争力。利用文献中有关表面波浪度的实验数据来训练、测试和验证三种不同的预测模型,包括独立的 ANN 模型、PSO 优化 ANN(PSO-ANN)模型和 RGPSO 优化 ANN(RGPSO-ANN)模型。结果表明,所开发的 RGPSO-ANN 模型在 RMSE (0.019)、R (0.996)、R20.990、MAE (0.013)、RMSLE0.013 和 MAPE (3.46 %) 等指标上都达到了最高精度。它的表现优于 PSO-ANN 模型(RMSE 0.026、R 0.975、R20.982、MAE 0.019、RMSLE0.019 和 MAPE 5.73 %),也优于 ANN 模型(RMSE 0.046、R0.991、R20.944、MAE 0.034、RMSLE0.032 和 MAPE 9.31 %)。然后应用 RGPSO、PSO 和其他优化算法来最小化 WAAM 组件的表面波浪度。RGPSO 获得了最佳值(0.1631 毫米),与使用 PSO 获得的最佳值相比,减少了 12.6 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction and optimization of surface waviness of WAAM components using a hybrid Rank-Gaussian PSO algorithm and ANN

Surface waviness is crucial for the quality of components produced via the wire and arc additive manufacturing (WAAM) process. This study presents a novel method for predicting surface waviness, employing an advanced model to optimize process parameter configurations using a combination of Rank-Gaussian particle swarm optimization (RGPSO) and an Artificial Neural Network (ANN). The novelty of this process is that the RGPSO not only optimizes the hyperparameters of the ANN model to enhance prediction performance, but also addresses surface waviness optimization. The RGPSO algorithm's optimization performance is evaluated using 23 benchmark functions, demonstrating competitiveness against nine comparative meta-heuristic algorithms. Experimental data on surface waviness from the literature are utilized to train, test and validate three different prediction models, including a standalone ANN model, a PSO optimized ANN (PSO-ANN) model, and an RGPSO optimized ANN (RGPSO-ANN) model. The results indicate that the developed RGPSO-ANN model achieves the highest accuracy in terms of the metrics RMSE (0.019), R (0.996), R20.990,MAE (0.013), RMSLE0.013,and MAPE (3.46 %). It performs better than the PSO-ANN model (RMSE 0.026, R 0.975, R20.982, MAE 0.019, RMSLE0.019,and MAPE 5.73 %), and better than the ANN (RMSE 0.046, R0.991, R20.944, MAE 0.034, RMSLE0.032 and MAPE 9.31 %). The RGPSO, PSO and other optimization algorithms are then applied to minimize the surface waviness of a WAAM component. RGPSO achieved the optimal value (0.1631 mm), which corresponds to a 12.6 % reduction compared to the best value obtained using PSO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信