利用机载激光雷达和实地测量评估南部非洲热带稀树草原的 GEDI 足印生物量模型

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Xiaoxuan Li , Konrad Wessels , John Armston , Laura Duncanson , Mikhail Urbazaev , Laven Naidoo , Renaud Mathieu , Russell Main
{"title":"利用机载激光雷达和实地测量评估南部非洲热带稀树草原的 GEDI 足印生物量模型","authors":"Xiaoxuan Li ,&nbsp;Konrad Wessels ,&nbsp;John Armston ,&nbsp;Laura Duncanson ,&nbsp;Mikhail Urbazaev ,&nbsp;Laven Naidoo ,&nbsp;Renaud Mathieu ,&nbsp;Russell Main","doi":"10.1016/j.srs.2024.100161","DOIUrl":null,"url":null,"abstract":"<div><p>Savannas cover more than 20% of the Earth and account for the third largest stock of global aboveground biomass yet estimates of their above ground biomass density (AGBD) are very inaccurate. The Global Ecosystem Dynamic Investigation (GEDI) sensor provides near-global full-waveform LiDAR data with 25 m footprints, from which various structural metrics are derived that are used to predict footprint level AGBD. The current GEDI L4A AGBD product uses a comprehensive Forest Structure and Biomass Database (FSBD) to develop models for specific plant functional types and geographic regions, but southern African savannas have been underrepresented in the reference data. The objectives of this study were to (i) validate GEDI L4A AGBD in South African savannas using field measurements and ALS datasets and (ii) develop and evaluate local GEDI footprint-level AGBD estimates from multiple L2A and L2B metrics. The local GEDI AGBD models outperformed GEDI L4A AGBD (R<sup>2</sup> = 0.42, RMSE = 12 Mg/ha, %RMSE = 79.5%) with higher R<sup>2</sup> and smaller error measures. The local GEDI AGBD using a random forest model (RF) had the highest R<sup>2</sup> of 0.71 and lowest %RMSE of 53.3%, while the generalized linear model (GLM) results provided the lowest Relative Mean Systematic Deviation (RMSD) of 9.2%, which was half that of RF model. L4A significantly underestimated AGBD with an RMSD up to −37%. This highlights the importance and benefits of local calibration of biomass models to unlock the full potential of GEDI metrics for estimating AGBD. The field and ALS data have subsequently been contributed to the GEDI FSBD and should be used in calibration of future versions of GEDI L4A AGBD product. This research paves the way for the integration of the local GEDI AGBD estimates with other sensors, notable the eminent NISAR mission, to derive regional to global gridded AGBD products that will enable the monitoring of savanna carbon stocks.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100161"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000452/pdfft?md5=73e6de19f0a4636ffb39019a392d7591&pid=1-s2.0-S2666017224000452-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of GEDI footprint level biomass models in Southern African Savannas using airborne LiDAR and field measurements\",\"authors\":\"Xiaoxuan Li ,&nbsp;Konrad Wessels ,&nbsp;John Armston ,&nbsp;Laura Duncanson ,&nbsp;Mikhail Urbazaev ,&nbsp;Laven Naidoo ,&nbsp;Renaud Mathieu ,&nbsp;Russell Main\",\"doi\":\"10.1016/j.srs.2024.100161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Savannas cover more than 20% of the Earth and account for the third largest stock of global aboveground biomass yet estimates of their above ground biomass density (AGBD) are very inaccurate. The Global Ecosystem Dynamic Investigation (GEDI) sensor provides near-global full-waveform LiDAR data with 25 m footprints, from which various structural metrics are derived that are used to predict footprint level AGBD. The current GEDI L4A AGBD product uses a comprehensive Forest Structure and Biomass Database (FSBD) to develop models for specific plant functional types and geographic regions, but southern African savannas have been underrepresented in the reference data. The objectives of this study were to (i) validate GEDI L4A AGBD in South African savannas using field measurements and ALS datasets and (ii) develop and evaluate local GEDI footprint-level AGBD estimates from multiple L2A and L2B metrics. The local GEDI AGBD models outperformed GEDI L4A AGBD (R<sup>2</sup> = 0.42, RMSE = 12 Mg/ha, %RMSE = 79.5%) with higher R<sup>2</sup> and smaller error measures. The local GEDI AGBD using a random forest model (RF) had the highest R<sup>2</sup> of 0.71 and lowest %RMSE of 53.3%, while the generalized linear model (GLM) results provided the lowest Relative Mean Systematic Deviation (RMSD) of 9.2%, which was half that of RF model. L4A significantly underestimated AGBD with an RMSD up to −37%. This highlights the importance and benefits of local calibration of biomass models to unlock the full potential of GEDI metrics for estimating AGBD. The field and ALS data have subsequently been contributed to the GEDI FSBD and should be used in calibration of future versions of GEDI L4A AGBD product. This research paves the way for the integration of the local GEDI AGBD estimates with other sensors, notable the eminent NISAR mission, to derive regional to global gridded AGBD products that will enable the monitoring of savanna carbon stocks.</p></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"10 \",\"pages\":\"Article 100161\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666017224000452/pdfft?md5=73e6de19f0a4636ffb39019a392d7591&pid=1-s2.0-S2666017224000452-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666017224000452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热带稀树草原占地球面积的 20% 以上,在全球地上生物量中占第三位,但对其地上生物量密度 (AGBD) 的估计却非常不准确。全球生态系统动态调查(GEDI)传感器提供了近乎全球的全波形激光雷达数据,其足迹为 25 米,从中得出的各种结构指标可用于预测足迹水平的 AGBD。目前的 GEDI L4A AGBD 产品使用全面的森林结构和生物量数据库 (FSBD) 来开发特定植物功能类型和地理区域的模型,但参考数据中非洲南部稀树草原的代表性不足。本研究的目标是:(i) 利用实地测量和 ALS 数据集验证南非热带稀树草原的 GEDI L4A AGBD;(ii) 根据多个 L2A 和 L2B 指标开发和评估本地 GEDI 脚印级 AGBD 估计值。本地 GEDI AGBD 模型的表现优于 GEDI L4A AGBD(R2 = 0.42,RMSE = 12 兆克/公顷,%RMSE = 79.5%),R2 较高,误差较小。采用随机森林模型(RF)的本地 GEDI AGBD 的 R2 最高,为 0.71,RMSE%最低,为 53.3%,而广义线性模型(GLM)的结果提供了最低的相对平均系统偏差(RMSD),为 9.2%,是 RF 模型的一半。L4A 严重低估了 AGBD,RMSD 高达 -37%。这凸显了生物量模型本地校准的重要性和益处,以充分释放 GEDI 指标在估算 AGBD 方面的潜力。野外数据和 ALS 数据随后被纳入 GEDI FSBD,并将用于校准未来版本的 GEDI L4A AGBD 产品。这项研究为将当地的 GEDI AGBD 估算值与其他传感器(尤其是著名的 NISAR 任务)整合在一起,以获得区域到全球的网格 AGBD 产品铺平了道路,从而能够监测热带稀树草原的碳储量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of GEDI footprint level biomass models in Southern African Savannas using airborne LiDAR and field measurements

Savannas cover more than 20% of the Earth and account for the third largest stock of global aboveground biomass yet estimates of their above ground biomass density (AGBD) are very inaccurate. The Global Ecosystem Dynamic Investigation (GEDI) sensor provides near-global full-waveform LiDAR data with 25 m footprints, from which various structural metrics are derived that are used to predict footprint level AGBD. The current GEDI L4A AGBD product uses a comprehensive Forest Structure and Biomass Database (FSBD) to develop models for specific plant functional types and geographic regions, but southern African savannas have been underrepresented in the reference data. The objectives of this study were to (i) validate GEDI L4A AGBD in South African savannas using field measurements and ALS datasets and (ii) develop and evaluate local GEDI footprint-level AGBD estimates from multiple L2A and L2B metrics. The local GEDI AGBD models outperformed GEDI L4A AGBD (R2 = 0.42, RMSE = 12 Mg/ha, %RMSE = 79.5%) with higher R2 and smaller error measures. The local GEDI AGBD using a random forest model (RF) had the highest R2 of 0.71 and lowest %RMSE of 53.3%, while the generalized linear model (GLM) results provided the lowest Relative Mean Systematic Deviation (RMSD) of 9.2%, which was half that of RF model. L4A significantly underestimated AGBD with an RMSD up to −37%. This highlights the importance and benefits of local calibration of biomass models to unlock the full potential of GEDI metrics for estimating AGBD. The field and ALS data have subsequently been contributed to the GEDI FSBD and should be used in calibration of future versions of GEDI L4A AGBD product. This research paves the way for the integration of the local GEDI AGBD estimates with other sensors, notable the eminent NISAR mission, to derive regional to global gridded AGBD products that will enable the monitoring of savanna carbon stocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信