{"title":"利用光学遥感图像绘制土地利用/土地覆盖图的类别敏感半监督语义分割框架","authors":"","doi":"10.1016/j.jag.2024.104160","DOIUrl":null,"url":null,"abstract":"<div><p>High-quality land-use/land-cover mapping with optical remote sensing images yet presents significant work. Even though fully convolutional semantic segmentation models have recently contributed to popular solutions, the lack of annotation data may lead to severe degradations in their inference performance. Besides, the category confusion in high-resolution representations will further exacerbate the adverse effects. In this paper, we propose a category-sensitive semi-supervised semantic segmentation framework to address these weaknesses by employing massive unlabeled data. With the perturbations from adopted hybrid data augmentation structures, we first focus on the output space and execute regularization constraints to learn category-specific discriminative features. It is formulated with a consistency self-training procedure where a dynamic class-balanced threshold selection scheme is proposed to provide high-confident pseudo supervisions for each category. In addition, we introduce pixel-wise contrastive learning on the common embedding space from both labeled and unlabeled data domains to further facilitate the semantic dependencies among category features, in which the reliable labels are leveraged as guidance for pixel sample selection. We verify the proposed framework on two benchmark land-use/land-cover datasets, and the experimental results demonstrate its competitive performance to other state-of-the-art semi-supervised methods.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569843224005168/pdfft?md5=2394704c886c870907f593c7dadca1cf&pid=1-s2.0-S1569843224005168-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Category-sensitive semi-supervised semantic segmentation framework for land-use/land-cover mapping with optical remote sensing images\",\"authors\":\"\",\"doi\":\"10.1016/j.jag.2024.104160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-quality land-use/land-cover mapping with optical remote sensing images yet presents significant work. Even though fully convolutional semantic segmentation models have recently contributed to popular solutions, the lack of annotation data may lead to severe degradations in their inference performance. Besides, the category confusion in high-resolution representations will further exacerbate the adverse effects. In this paper, we propose a category-sensitive semi-supervised semantic segmentation framework to address these weaknesses by employing massive unlabeled data. With the perturbations from adopted hybrid data augmentation structures, we first focus on the output space and execute regularization constraints to learn category-specific discriminative features. It is formulated with a consistency self-training procedure where a dynamic class-balanced threshold selection scheme is proposed to provide high-confident pseudo supervisions for each category. In addition, we introduce pixel-wise contrastive learning on the common embedding space from both labeled and unlabeled data domains to further facilitate the semantic dependencies among category features, in which the reliable labels are leveraged as guidance for pixel sample selection. We verify the proposed framework on two benchmark land-use/land-cover datasets, and the experimental results demonstrate its competitive performance to other state-of-the-art semi-supervised methods.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005168/pdfft?md5=2394704c886c870907f593c7dadca1cf&pid=1-s2.0-S1569843224005168-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Category-sensitive semi-supervised semantic segmentation framework for land-use/land-cover mapping with optical remote sensing images
High-quality land-use/land-cover mapping with optical remote sensing images yet presents significant work. Even though fully convolutional semantic segmentation models have recently contributed to popular solutions, the lack of annotation data may lead to severe degradations in their inference performance. Besides, the category confusion in high-resolution representations will further exacerbate the adverse effects. In this paper, we propose a category-sensitive semi-supervised semantic segmentation framework to address these weaknesses by employing massive unlabeled data. With the perturbations from adopted hybrid data augmentation structures, we first focus on the output space and execute regularization constraints to learn category-specific discriminative features. It is formulated with a consistency self-training procedure where a dynamic class-balanced threshold selection scheme is proposed to provide high-confident pseudo supervisions for each category. In addition, we introduce pixel-wise contrastive learning on the common embedding space from both labeled and unlabeled data domains to further facilitate the semantic dependencies among category features, in which the reliable labels are leveraged as guidance for pixel sample selection. We verify the proposed framework on two benchmark land-use/land-cover datasets, and the experimental results demonstrate its competitive performance to other state-of-the-art semi-supervised methods.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.