{"title":"利用溶解氯化钾调节含功能化硅烷基配体的钇配合物的反应活性","authors":"Qing You, Jiamin Cai, Jie Zhang and Xigeng Zhou","doi":"10.1039/D4QI01882F","DOIUrl":null,"url":null,"abstract":"<p >Distinguished functionalization of the silyl-bridged amido PhSiH<small><sub>2</sub></small>-substituted alkyl ligand in an yttrium complex under solvated KCl additive conditions is described. Treatment of the Tp<small><sup>Me<small><sub>2</sub></small></sup></small>-supported yttrium silyl-bridged amido PhSiH<small><sub>2</sub></small>-substituted alkyl complex <strong>1</strong> (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y[η<small><sup>2</sup></small>-(<em>C</em>,<em>N</em>)-CH(SiH<small><sub>2</sub></small>Ph)Si(Me<small><sub>2</sub></small>)NSiMe<small><sub>3</sub></small>]) with elemental sulfur S<small><sub>8</sub></small> under KCl additive conditions afforded three structurally characterized yttrium complexes (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>3</sub></small>Y<small><sub>4</sub></small>[μ<small><sub>3</sub></small>–η<small><sup>1</sup></small>:η<small><sup>2</sup></small>:η<small><sup>2</sup></small>-(S<small><sub>3</sub></small>)SiPh]<small><sub>2</sub></small>(μ–η<small><sup>2</sup></small>:η<small><sup>2</sup></small>-S<small><sub>2</sub></small>)(μ-Cl)(THF) (<strong>2</strong>), [(Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>2</sub></small>Y]<small><sub>2</sub></small><small><sup>2+</sup></small>{(Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y)<small><sub>3</sub></small>[μ<small><sub>3</sub></small>–η<small><sup>1</sup></small>:η<small><sup>2</sup></small>:η<small><sup>3</sup></small>-(S<small><sub>3</sub></small>)SiPh]<small><sub>3</sub></small>K(THF)}<small><sup>2−</sup></small> (<strong>3</strong>), and [(Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>2</sub></small>Y]<small><sup>+</sup></small>{[Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y(ClN(SiMe<small><sub>3</sub></small>)<small><sub>2</sub></small>)<small><sub>2</sub></small>]μ-(Cl)<small><sub>2</sub></small>K}<small><sup>−</sup></small> (<strong>4</strong>), providing a straightforward method for construction of phenylsilyl trisulfide PhSiS<small><sub>3</sub></small><small><sup>3−</sup></small> under mild conditions. Without KCl, <strong>1</strong> reacted with S<small><sub>8</sub></small> to give a routine Y–C insertion product <strong>5</strong> (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y[η<small><sup>2</sup></small>-(<em>S</em>,<em>N</em>)-SCH(SiH<small><sub>2</sub></small>Ph)Si(Me<small><sub>2</sub></small>)NSiMe<small><sub>3</sub></small>]). Similarly, the reaction of <strong>1</strong> with isothiocyanate under KCl additive conditions formed a double insertion product (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>2</sub></small>Y<small><sub>2</sub></small>{μ–η<small><sup>3</sup></small>:η<small><sup>2</sup></small>-(<em>S</em>,<em>S</em>,<em>N</em>,<em>N</em>,<em>N</em>)-N(SiMe<small><sub>3</sub></small>)Si(Me<small><sub>2</sub></small>)CH[C(S) = NC<small><sub>6</sub></small>H<small><sub>4</sub></small>CH<small><sub>3</sub></small>-<em>p</em>]<small><sub>2</sub></small>}Cl (<strong>7</strong>), accompanied by the elimination of an intermolecular silyl-migration product KNSiMe<small><sub>3</sub></small>Si(Me<small><sub>2</sub></small>)CH(SiH<small><sub>2</sub></small>Ph)<small><sub>2</sub></small> (<strong>I</strong>). The intermolecular silyl migration was also observed in the three-component reaction of <strong>1</strong> with <small><sup><em>t</em></sup></small>BuNC, and CO<small><sub>2</sub></small>. The reaction of <strong>1</strong> and PhNCS without KCl additive only produced <strong>8</strong> (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y[η<small><sup>2</sup></small>-(<em>S</em>,<em>N</em>)-SC(N(SiH<small><sub>2</sub></small>Ph)Ph) = CHSi(Me<small><sub>2</sub></small>)NSiMe<small><sub>3</sub></small>]). These results indicate that the possible weak interaction between a rare-earth ion and KCl might play a crucial role in the conversion of this modified silylamino ligand.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 21","pages":" 7501-7511"},"PeriodicalIF":6.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the reactivity of an yttrium complex bearing a functionalized silylamido ligand using solvated KCl†‡\",\"authors\":\"Qing You, Jiamin Cai, Jie Zhang and Xigeng Zhou\",\"doi\":\"10.1039/D4QI01882F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Distinguished functionalization of the silyl-bridged amido PhSiH<small><sub>2</sub></small>-substituted alkyl ligand in an yttrium complex under solvated KCl additive conditions is described. Treatment of the Tp<small><sup>Me<small><sub>2</sub></small></sup></small>-supported yttrium silyl-bridged amido PhSiH<small><sub>2</sub></small>-substituted alkyl complex <strong>1</strong> (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y[η<small><sup>2</sup></small>-(<em>C</em>,<em>N</em>)-CH(SiH<small><sub>2</sub></small>Ph)Si(Me<small><sub>2</sub></small>)NSiMe<small><sub>3</sub></small>]) with elemental sulfur S<small><sub>8</sub></small> under KCl additive conditions afforded three structurally characterized yttrium complexes (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>3</sub></small>Y<small><sub>4</sub></small>[μ<small><sub>3</sub></small>–η<small><sup>1</sup></small>:η<small><sup>2</sup></small>:η<small><sup>2</sup></small>-(S<small><sub>3</sub></small>)SiPh]<small><sub>2</sub></small>(μ–η<small><sup>2</sup></small>:η<small><sup>2</sup></small>-S<small><sub>2</sub></small>)(μ-Cl)(THF) (<strong>2</strong>), [(Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>2</sub></small>Y]<small><sub>2</sub></small><small><sup>2+</sup></small>{(Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y)<small><sub>3</sub></small>[μ<small><sub>3</sub></small>–η<small><sup>1</sup></small>:η<small><sup>2</sup></small>:η<small><sup>3</sup></small>-(S<small><sub>3</sub></small>)SiPh]<small><sub>3</sub></small>K(THF)}<small><sup>2−</sup></small> (<strong>3</strong>), and [(Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>2</sub></small>Y]<small><sup>+</sup></small>{[Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y(ClN(SiMe<small><sub>3</sub></small>)<small><sub>2</sub></small>)<small><sub>2</sub></small>]μ-(Cl)<small><sub>2</sub></small>K}<small><sup>−</sup></small> (<strong>4</strong>), providing a straightforward method for construction of phenylsilyl trisulfide PhSiS<small><sub>3</sub></small><small><sup>3−</sup></small> under mild conditions. Without KCl, <strong>1</strong> reacted with S<small><sub>8</sub></small> to give a routine Y–C insertion product <strong>5</strong> (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y[η<small><sup>2</sup></small>-(<em>S</em>,<em>N</em>)-SCH(SiH<small><sub>2</sub></small>Ph)Si(Me<small><sub>2</sub></small>)NSiMe<small><sub>3</sub></small>]). Similarly, the reaction of <strong>1</strong> with isothiocyanate under KCl additive conditions formed a double insertion product (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>)<small><sub>2</sub></small>Y<small><sub>2</sub></small>{μ–η<small><sup>3</sup></small>:η<small><sup>2</sup></small>-(<em>S</em>,<em>S</em>,<em>N</em>,<em>N</em>,<em>N</em>)-N(SiMe<small><sub>3</sub></small>)Si(Me<small><sub>2</sub></small>)CH[C(S) = NC<small><sub>6</sub></small>H<small><sub>4</sub></small>CH<small><sub>3</sub></small>-<em>p</em>]<small><sub>2</sub></small>}Cl (<strong>7</strong>), accompanied by the elimination of an intermolecular silyl-migration product KNSiMe<small><sub>3</sub></small>Si(Me<small><sub>2</sub></small>)CH(SiH<small><sub>2</sub></small>Ph)<small><sub>2</sub></small> (<strong>I</strong>). The intermolecular silyl migration was also observed in the three-component reaction of <strong>1</strong> with <small><sup><em>t</em></sup></small>BuNC, and CO<small><sub>2</sub></small>. The reaction of <strong>1</strong> and PhNCS without KCl additive only produced <strong>8</strong> (Tp<small><sup>Me<small><sub>2</sub></small></sup></small>Y[η<small><sup>2</sup></small>-(<em>S</em>,<em>N</em>)-SC(N(SiH<small><sub>2</sub></small>Ph)Ph) = CHSi(Me<small><sub>2</sub></small>)NSiMe<small><sub>3</sub></small>]). These results indicate that the possible weak interaction between a rare-earth ion and KCl might play a crucial role in the conversion of this modified silylamino ligand.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 21\",\"pages\":\" 7501-7511\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01882f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01882f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Tuning the reactivity of an yttrium complex bearing a functionalized silylamido ligand using solvated KCl†‡
Distinguished functionalization of the silyl-bridged amido PhSiH2-substituted alkyl ligand in an yttrium complex under solvated KCl additive conditions is described. Treatment of the TpMe2-supported yttrium silyl-bridged amido PhSiH2-substituted alkyl complex 1 (TpMe2Y[η2-(C,N)-CH(SiH2Ph)Si(Me2)NSiMe3]) with elemental sulfur S8 under KCl additive conditions afforded three structurally characterized yttrium complexes (TpMe2)3Y4[μ3–η1:η2:η2-(S3)SiPh]2(μ–η2:η2-S2)(μ-Cl)(THF) (2), [(TpMe2)2Y]22+{(TpMe2Y)3[μ3–η1:η2:η3-(S3)SiPh]3K(THF)}2− (3), and [(TpMe2)2Y]+{[TpMe2Y(ClN(SiMe3)2)2]μ-(Cl)2K}− (4), providing a straightforward method for construction of phenylsilyl trisulfide PhSiS33− under mild conditions. Without KCl, 1 reacted with S8 to give a routine Y–C insertion product 5 (TpMe2Y[η2-(S,N)-SCH(SiH2Ph)Si(Me2)NSiMe3]). Similarly, the reaction of 1 with isothiocyanate under KCl additive conditions formed a double insertion product (TpMe2)2Y2{μ–η3:η2-(S,S,N,N,N)-N(SiMe3)Si(Me2)CH[C(S) = NC6H4CH3-p]2}Cl (7), accompanied by the elimination of an intermolecular silyl-migration product KNSiMe3Si(Me2)CH(SiH2Ph)2 (I). The intermolecular silyl migration was also observed in the three-component reaction of 1 with tBuNC, and CO2. The reaction of 1 and PhNCS without KCl additive only produced 8 (TpMe2Y[η2-(S,N)-SC(N(SiH2Ph)Ph) = CHSi(Me2)NSiMe3]). These results indicate that the possible weak interaction between a rare-earth ion and KCl might play a crucial role in the conversion of this modified silylamino ligand.