针对调度问题的跨子集适度指数时间量子动态编程

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Camille Grange , Michael Poss , Eric Bourreau , Vincent T’kindt , Olivier Ploton
{"title":"针对调度问题的跨子集适度指数时间量子动态编程","authors":"Camille Grange ,&nbsp;Michael Poss ,&nbsp;Eric Bourreau ,&nbsp;Vincent T’kindt ,&nbsp;Olivier Ploton","doi":"10.1016/j.ejor.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Grover Search is currently one of the main quantum algorithms leading to hybrid quantum–classical methods that reduce the worst-case time complexity for some combinatorial optimization problems. Specifically, the combination of Quantum Minimum Finding (obtained from Grover Search) with dynamic programming has proved particularly efficient in improving the complexity of NP-hard problems currently solved by classical dynamic programming. For these problems, the classical dynamic programming complexity in <span><math><mrow><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> denotes that polynomial factors are ignored, can be reduced by a hybrid algorithm to <span><math><mrow><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>c</mi></mrow><mrow><mi>q</mi><mi>u</mi><mi>a</mi><mi>n</mi><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, with <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>q</mi><mi>u</mi><mi>a</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>&lt;</mo><mi>c</mi></mrow></math></span>. In this paper, we provide a bounded-error hybrid algorithm that achieves such an improvement for a broad class of NP-hard single-machine scheduling problems for which we give a generic description. Moreover, we extend this algorithm to tackle the 3-machine flowshop problem. Our algorithm reduces the exponential-part complexity compared to the best-known classical algorithm, sometimes at the cost of an additional pseudo-polynomial factor.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate exponential-time quantum dynamic programming across the subsets for scheduling problems\",\"authors\":\"Camille Grange ,&nbsp;Michael Poss ,&nbsp;Eric Bourreau ,&nbsp;Vincent T’kindt ,&nbsp;Olivier Ploton\",\"doi\":\"10.1016/j.ejor.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grover Search is currently one of the main quantum algorithms leading to hybrid quantum–classical methods that reduce the worst-case time complexity for some combinatorial optimization problems. Specifically, the combination of Quantum Minimum Finding (obtained from Grover Search) with dynamic programming has proved particularly efficient in improving the complexity of NP-hard problems currently solved by classical dynamic programming. For these problems, the classical dynamic programming complexity in <span><math><mrow><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> denotes that polynomial factors are ignored, can be reduced by a hybrid algorithm to <span><math><mrow><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>c</mi></mrow><mrow><mi>q</mi><mi>u</mi><mi>a</mi><mi>n</mi><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, with <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>q</mi><mi>u</mi><mi>a</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>&lt;</mo><mi>c</mi></mrow></math></span>. In this paper, we provide a bounded-error hybrid algorithm that achieves such an improvement for a broad class of NP-hard single-machine scheduling problems for which we give a generic description. Moreover, we extend this algorithm to tackle the 3-machine flowshop problem. Our algorithm reduces the exponential-part complexity compared to the best-known classical algorithm, sometimes at the cost of an additional pseudo-polynomial factor.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377221724006969\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724006969","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

格罗弗搜索(Grover Search)是目前主要的量子算法之一,它是一种量子-经典混合方法,可降低某些组合优化问题的最坏情况时间复杂度。具体来说,量子最小搜索(从格罗弗搜索中获得)与动态编程的结合被证明在改善目前由经典动态编程解决的 NP 难问题的复杂性方面特别有效。对于这些问题,混合算法可以将经典动态程序设计的复杂度降低到 ,其中表示忽略多项式系数。 在本文中,我们提供了一种有界错误的混合算法,该算法可以针对一类广泛的 NP 难单机调度问题实现这样的改进,我们对这些问题给出了通用描述。此外,我们还将这一算法扩展到处理 3 台机器的流水车间问题。与最著名的经典算法相比,我们的算法降低了指数部分的复杂度,有时还以额外的伪多项式系数为代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moderate exponential-time quantum dynamic programming across the subsets for scheduling problems
Grover Search is currently one of the main quantum algorithms leading to hybrid quantum–classical methods that reduce the worst-case time complexity for some combinatorial optimization problems. Specifically, the combination of Quantum Minimum Finding (obtained from Grover Search) with dynamic programming has proved particularly efficient in improving the complexity of NP-hard problems currently solved by classical dynamic programming. For these problems, the classical dynamic programming complexity in O(cn), where O denotes that polynomial factors are ignored, can be reduced by a hybrid algorithm to O(cquantn), with cquant<c. In this paper, we provide a bounded-error hybrid algorithm that achieves such an improvement for a broad class of NP-hard single-machine scheduling problems for which we give a generic description. Moreover, we extend this algorithm to tackle the 3-machine flowshop problem. Our algorithm reduces the exponential-part complexity compared to the best-known classical algorithm, sometimes at the cost of an additional pseudo-polynomial factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信