解决克隆解卷积和进化问题的最优解的多重性

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Maitena Tellaetxe-Abete , Charles Lawrie , Borja Calvo
{"title":"解决克隆解卷积和进化问题的最优解的多重性","authors":"Maitena Tellaetxe-Abete ,&nbsp;Charles Lawrie ,&nbsp;Borja Calvo","doi":"10.1016/j.ejor.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>The Clonal Deconvolution and Evolution Problem consists on unraveling the clonal structure and phylogeny of a tumor using estimated mutation frequency values obtained from multiple biopsies containing mixtures of tumor clones. In this article, we tackle the problem from an optimization perspective and we explore the number of optimal solutions for a given instance. Even in ideal scenarios without noise, we demonstrate that the Clonal Deconvolution and Evolution Problem is highly under-determined, leading to multiple solutions. Through a comprehensive analysis, we examine the factors contributing to the multiplicity of solutions. We find that as the number of samples increases, the number of optimal solutions decreases. Additionally, we explore how this phenomenon operates across various tumor topology scenarios. To address the issue of the existence of multiple solutions, we present sufficient conditions under which the problem can have a unique solution, and we propose a linear programming-based algorithm that leverages mutation orderings to generate instances with a single solution for a given topology. This algorithm encounters numerical challenges when applied to large instance sizes so, to overcome this, we propose a heuristic adaptation that enables the algorithm’s use for instances of any size.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing the multiplicity of optimal solutions to the Clonal Deconvolution and Evolution Problem\",\"authors\":\"Maitena Tellaetxe-Abete ,&nbsp;Charles Lawrie ,&nbsp;Borja Calvo\",\"doi\":\"10.1016/j.ejor.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Clonal Deconvolution and Evolution Problem consists on unraveling the clonal structure and phylogeny of a tumor using estimated mutation frequency values obtained from multiple biopsies containing mixtures of tumor clones. In this article, we tackle the problem from an optimization perspective and we explore the number of optimal solutions for a given instance. Even in ideal scenarios without noise, we demonstrate that the Clonal Deconvolution and Evolution Problem is highly under-determined, leading to multiple solutions. Through a comprehensive analysis, we examine the factors contributing to the multiplicity of solutions. We find that as the number of samples increases, the number of optimal solutions decreases. Additionally, we explore how this phenomenon operates across various tumor topology scenarios. To address the issue of the existence of multiple solutions, we present sufficient conditions under which the problem can have a unique solution, and we propose a linear programming-based algorithm that leverages mutation orderings to generate instances with a single solution for a given topology. This algorithm encounters numerical challenges when applied to large instance sizes so, to overcome this, we propose a heuristic adaptation that enables the algorithm’s use for instances of any size.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377221724007094\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724007094","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

克隆解卷积和进化问题包括利用从包含肿瘤克隆混合物的多个活组织切片中获得的估计突变频率值来揭示肿瘤的克隆结构和系统发育。在本文中,我们从优化的角度来解决这个问题,并探索给定实例的最优解数量。即使在没有噪音的理想情况下,我们也证明克隆解卷积和进化问题的决定性很低,会导致多个解决方案。通过综合分析,我们研究了导致多解的因素。我们发现,随着样本数量的增加,最优解的数量也在减少。此外,我们还探讨了这一现象如何在不同的肿瘤拓扑情况下发生作用。为了解决存在多个解决方案的问题,我们提出了问题可以有唯一解决方案的充分条件,并提出了一种基于线性编程的算法,该算法利用突变排序为给定拓扑生成具有单一解决方案的实例。该算法在应用于大型实例时会遇到数值难题,因此,为了克服这一难题,我们提出了一种启发式调整方法,使该算法能够用于任何规模的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing the multiplicity of optimal solutions to the Clonal Deconvolution and Evolution Problem
The Clonal Deconvolution and Evolution Problem consists on unraveling the clonal structure and phylogeny of a tumor using estimated mutation frequency values obtained from multiple biopsies containing mixtures of tumor clones. In this article, we tackle the problem from an optimization perspective and we explore the number of optimal solutions for a given instance. Even in ideal scenarios without noise, we demonstrate that the Clonal Deconvolution and Evolution Problem is highly under-determined, leading to multiple solutions. Through a comprehensive analysis, we examine the factors contributing to the multiplicity of solutions. We find that as the number of samples increases, the number of optimal solutions decreases. Additionally, we explore how this phenomenon operates across various tumor topology scenarios. To address the issue of the existence of multiple solutions, we present sufficient conditions under which the problem can have a unique solution, and we propose a linear programming-based algorithm that leverages mutation orderings to generate instances with a single solution for a given topology. This algorithm encounters numerical challenges when applied to large instance sizes so, to overcome this, we propose a heuristic adaptation that enables the algorithm’s use for instances of any size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信