Tea E. Heikkilä, Emilia K. Kaiser, Jake Lin, Dipender Gill, Jaakko J. Koskenniemi, Ville Karhunen
{"title":"以 IL-2、IL-6 和 TYK2 信号为靶点预防 1 型糖尿病疗效的遗传学证据:孟德尔随机研究","authors":"Tea E. Heikkilä, Emilia K. Kaiser, Jake Lin, Dipender Gill, Jaakko J. Koskenniemi, Ville Karhunen","doi":"10.1007/s00125-024-06267-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims/hypothesis</h3><p>We aimed to investigate the genetic evidence that supports the repurposing of drugs already licensed or in clinical phases of development for prevention of type 1 diabetes.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We obtained genome-wide association study summary statistics for the risk of type 1 diabetes, whole-blood gene expression and serum protein levels and investigated genetic polymorphisms near seven potential drug target genes. We used co-localisation to examine whether the same genetic variants that are associated with type 1 diabetes risk were also associated with the relevant drug target genetic proxies and used Mendelian randomisation to evaluate the direction and magnitude of the associations. Furthermore, we performed Mendelian randomisation analysis restricted to functional variants within the drug target genes.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Co-localisation revealed that the blood expression levels of <i>IL2RA</i> (encoding IL-2 receptor subunit α [IL2RA]), <i>IL6R</i> (encoding IL-6 receptor [IL6R]) and <i>IL6ST</i> (encoding IL-6 cytokine family signal transducer [IL6ST]) shared the same causal variant with type 1 diabetes liability near the corresponding genes (posterior probabilities 100%, 96.5% and 97.0%, respectively). The OR (95% CI) of type 1 diabetes per 1-SD increase in the genetically proxied gene expression of <i>IL2RA</i>, <i>IL6R</i> and <i>IL6ST</i> were 0.22 (0.17, 0.27), 1.98 (1.48, 2.65) and 1.90 (1.45, 2.48), respectively. Using missense variants, genetically proxied <i>TYK2</i> (encoding tyrosine kinase 2) expression levels were associated with type 1 diabetes risk (OR 0.61 [95% CI 0.54, 0.69]).</p><h3 data-test=\"abstract-sub-heading\">Conclusions/interpretation</h3><p>Our findings support the targeting of IL-2, IL-6 and TYK2 signalling in prevention of type 1 diabetes.</p><h3 data-test=\"abstract-sub-heading\">Data availability</h3><p>The analysis code is available at https://github.com/jkoskenniemi/T1DSCREEN, which also includes instructions on how to download the original GWAS summary statistics.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic evidence for efficacy of targeting IL-2, IL-6 and TYK2 signalling in the prevention of type 1 diabetes: a Mendelian randomisation study\",\"authors\":\"Tea E. Heikkilä, Emilia K. Kaiser, Jake Lin, Dipender Gill, Jaakko J. Koskenniemi, Ville Karhunen\",\"doi\":\"10.1007/s00125-024-06267-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Aims/hypothesis</h3><p>We aimed to investigate the genetic evidence that supports the repurposing of drugs already licensed or in clinical phases of development for prevention of type 1 diabetes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We obtained genome-wide association study summary statistics for the risk of type 1 diabetes, whole-blood gene expression and serum protein levels and investigated genetic polymorphisms near seven potential drug target genes. We used co-localisation to examine whether the same genetic variants that are associated with type 1 diabetes risk were also associated with the relevant drug target genetic proxies and used Mendelian randomisation to evaluate the direction and magnitude of the associations. Furthermore, we performed Mendelian randomisation analysis restricted to functional variants within the drug target genes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Co-localisation revealed that the blood expression levels of <i>IL2RA</i> (encoding IL-2 receptor subunit α [IL2RA]), <i>IL6R</i> (encoding IL-6 receptor [IL6R]) and <i>IL6ST</i> (encoding IL-6 cytokine family signal transducer [IL6ST]) shared the same causal variant with type 1 diabetes liability near the corresponding genes (posterior probabilities 100%, 96.5% and 97.0%, respectively). The OR (95% CI) of type 1 diabetes per 1-SD increase in the genetically proxied gene expression of <i>IL2RA</i>, <i>IL6R</i> and <i>IL6ST</i> were 0.22 (0.17, 0.27), 1.98 (1.48, 2.65) and 1.90 (1.45, 2.48), respectively. Using missense variants, genetically proxied <i>TYK2</i> (encoding tyrosine kinase 2) expression levels were associated with type 1 diabetes risk (OR 0.61 [95% CI 0.54, 0.69]).</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions/interpretation</h3><p>Our findings support the targeting of IL-2, IL-6 and TYK2 signalling in prevention of type 1 diabetes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Data availability</h3><p>The analysis code is available at https://github.com/jkoskenniemi/T1DSCREEN, which also includes instructions on how to download the original GWAS summary statistics.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-024-06267-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-024-06267-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Genetic evidence for efficacy of targeting IL-2, IL-6 and TYK2 signalling in the prevention of type 1 diabetes: a Mendelian randomisation study
Aims/hypothesis
We aimed to investigate the genetic evidence that supports the repurposing of drugs already licensed or in clinical phases of development for prevention of type 1 diabetes.
Methods
We obtained genome-wide association study summary statistics for the risk of type 1 diabetes, whole-blood gene expression and serum protein levels and investigated genetic polymorphisms near seven potential drug target genes. We used co-localisation to examine whether the same genetic variants that are associated with type 1 diabetes risk were also associated with the relevant drug target genetic proxies and used Mendelian randomisation to evaluate the direction and magnitude of the associations. Furthermore, we performed Mendelian randomisation analysis restricted to functional variants within the drug target genes.
Results
Co-localisation revealed that the blood expression levels of IL2RA (encoding IL-2 receptor subunit α [IL2RA]), IL6R (encoding IL-6 receptor [IL6R]) and IL6ST (encoding IL-6 cytokine family signal transducer [IL6ST]) shared the same causal variant with type 1 diabetes liability near the corresponding genes (posterior probabilities 100%, 96.5% and 97.0%, respectively). The OR (95% CI) of type 1 diabetes per 1-SD increase in the genetically proxied gene expression of IL2RA, IL6R and IL6ST were 0.22 (0.17, 0.27), 1.98 (1.48, 2.65) and 1.90 (1.45, 2.48), respectively. Using missense variants, genetically proxied TYK2 (encoding tyrosine kinase 2) expression levels were associated with type 1 diabetes risk (OR 0.61 [95% CI 0.54, 0.69]).
Conclusions/interpretation
Our findings support the targeting of IL-2, IL-6 and TYK2 signalling in prevention of type 1 diabetes.
Data availability
The analysis code is available at https://github.com/jkoskenniemi/T1DSCREEN, which also includes instructions on how to download the original GWAS summary statistics.
期刊介绍:
Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.