{"title":"一类非局部 Lipschitzian 大规模随机非线性系统的分散自适应有限时间稳定化","authors":"","doi":"10.1016/j.automatica.2024.111900","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, finite-time stabilization is investigated for a class of non-local Lipschitzian large-scale stochastic nonlinear systems with two types of uncertainties, including parametric uncertainties and uncertain interactions. First, we present a new stochastic finite-time stability theorem on stochastic adaptive finite-time control, by which we obtain an existing finite-time stability result for the interconnected stochastic nonlinear systems. Then, for a class of large-scale stochastic nonlinear systems with uncertainties, an adaptive finite-time controller is constructively designed. It is proved by the developed finite-time stability theorem that there exists a global weak solution to the closed-loop system, the trivial weak solution of the closed-loop system is globally stable in probability and the states of the system almost surely converge to the origin in finite time. At last, a simulation example is given to show the effectiveness of the proposed design procedure.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005109824003947/pdfft?md5=c08ad9bc9d7925af5944832ba398b624&pid=1-s2.0-S0005109824003947-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Decentralized adaptive finite-time stabilization for a class of non-local Lipschitzian large-scale stochastic nonlinear systems\",\"authors\":\"\",\"doi\":\"10.1016/j.automatica.2024.111900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, finite-time stabilization is investigated for a class of non-local Lipschitzian large-scale stochastic nonlinear systems with two types of uncertainties, including parametric uncertainties and uncertain interactions. First, we present a new stochastic finite-time stability theorem on stochastic adaptive finite-time control, by which we obtain an existing finite-time stability result for the interconnected stochastic nonlinear systems. Then, for a class of large-scale stochastic nonlinear systems with uncertainties, an adaptive finite-time controller is constructively designed. It is proved by the developed finite-time stability theorem that there exists a global weak solution to the closed-loop system, the trivial weak solution of the closed-loop system is globally stable in probability and the states of the system almost surely converge to the origin in finite time. At last, a simulation example is given to show the effectiveness of the proposed design procedure.</p></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0005109824003947/pdfft?md5=c08ad9bc9d7925af5944832ba398b624&pid=1-s2.0-S0005109824003947-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824003947\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824003947","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Decentralized adaptive finite-time stabilization for a class of non-local Lipschitzian large-scale stochastic nonlinear systems
In this paper, finite-time stabilization is investigated for a class of non-local Lipschitzian large-scale stochastic nonlinear systems with two types of uncertainties, including parametric uncertainties and uncertain interactions. First, we present a new stochastic finite-time stability theorem on stochastic adaptive finite-time control, by which we obtain an existing finite-time stability result for the interconnected stochastic nonlinear systems. Then, for a class of large-scale stochastic nonlinear systems with uncertainties, an adaptive finite-time controller is constructively designed. It is proved by the developed finite-time stability theorem that there exists a global weak solution to the closed-loop system, the trivial weak solution of the closed-loop system is globally stable in probability and the states of the system almost surely converge to the origin in finite time. At last, a simulation example is given to show the effectiveness of the proposed design procedure.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.