Yan-Zi Guo , Han-Yu Cui , Ming-Yuan Cai , Di Wang , Wei-Ping Deng , Chang-Ping Hu
{"title":"SOX9 通过稳定肺动脉平滑肌细胞中的 DPP4 促进缺氧性肺动脉高压的形成","authors":"Yan-Zi Guo , Han-Yu Cui , Ming-Yuan Cai , Di Wang , Wei-Ping Deng , Chang-Ping Hu","doi":"10.1016/j.yexcr.2024.114254","DOIUrl":null,"url":null,"abstract":"<div><p>Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114254"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOX9 promotes hypoxic pulmonary hypertension through stabilization of DPP4 in pulmonary artery smooth muscle cells\",\"authors\":\"Yan-Zi Guo , Han-Yu Cui , Ming-Yuan Cai , Di Wang , Wei-Ping Deng , Chang-Ping Hu\",\"doi\":\"10.1016/j.yexcr.2024.114254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114254\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003458\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003458","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SOX9 promotes hypoxic pulmonary hypertension through stabilization of DPP4 in pulmonary artery smooth muscle cells
Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.