Rehan Zubair Khalid , Ibrahim Ahmed , Atta Ullah , Enrico Zio , Asifullah Khan
{"title":"利用深度稀疏自动编码器和深度神经网络的集合提高圆形通道临界热通量预测的准确性","authors":"Rehan Zubair Khalid , Ibrahim Ahmed , Atta Ullah , Enrico Zio , Asifullah Khan","doi":"10.1016/j.nucengdes.2024.113587","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m<sup>2</sup>s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a <em>meta</em>-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks\",\"authors\":\"Rehan Zubair Khalid , Ibrahim Ahmed , Atta Ullah , Enrico Zio , Asifullah Khan\",\"doi\":\"10.1016/j.nucengdes.2024.113587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m<sup>2</sup>s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a <em>meta</em>-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324006873\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324006873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks
Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m2s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.