{"title":"路基空间变化对土工格栅应变缓解能力和柔性路面车辙寿命的影响","authors":"","doi":"10.1016/j.trgeo.2024.101368","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs the Random Field Finite Difference Analysis to assess how subgrade spatial variability impacts geogrid reinforcement’s strain-alleviating ability and the reinforced pavement’s rutting life. The geogrid’s abilities to reduce critical strains are evaluated using a strain-alleviating ratio and compared between deterministic and spatially variable scenarios. The analysis involves six geogrid reinforcement arrangements, considering two kinds of geogrid stiffness (G1 and G2) and three typical positions: top (L1), mid-depth (L1-2) and bottom (L2) of the base course. Key findings include: (a) Subgrade spatial variability significantly amplifies mean critical strains and leads to irregular strain and stress distributions, which in turn impacts the strain-alleviating ability of the geogrid reinforcements and potentially changes the optimal geogrid position. (b) The impacts of subgrade spatial variability on the geogrids’ strain-alleviating ability vary with the type of critical strains, the geogrid position, and the coefficient of variation and scale of fluctuation of subgrade modulus. When the geogrid is located at L2 (G_L2), its ability to alleviate critical subgrade strain is significantly compromised. (c) The adverse effect of subgrade spatial variability on the rutting life of G_L2 reinforced pavement is significant and can be mitigated by homogenising a very thin sublayer at the subgrade surface.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214391224001892/pdfft?md5=9400971d5f00b411de2d0b61f123fa83&pid=1-s2.0-S2214391224001892-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of subgrade spatial variability on strain-alleviating ability of geogrids and rutting life in flexible pavement\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study employs the Random Field Finite Difference Analysis to assess how subgrade spatial variability impacts geogrid reinforcement’s strain-alleviating ability and the reinforced pavement’s rutting life. The geogrid’s abilities to reduce critical strains are evaluated using a strain-alleviating ratio and compared between deterministic and spatially variable scenarios. The analysis involves six geogrid reinforcement arrangements, considering two kinds of geogrid stiffness (G1 and G2) and three typical positions: top (L1), mid-depth (L1-2) and bottom (L2) of the base course. Key findings include: (a) Subgrade spatial variability significantly amplifies mean critical strains and leads to irregular strain and stress distributions, which in turn impacts the strain-alleviating ability of the geogrid reinforcements and potentially changes the optimal geogrid position. (b) The impacts of subgrade spatial variability on the geogrids’ strain-alleviating ability vary with the type of critical strains, the geogrid position, and the coefficient of variation and scale of fluctuation of subgrade modulus. When the geogrid is located at L2 (G_L2), its ability to alleviate critical subgrade strain is significantly compromised. (c) The adverse effect of subgrade spatial variability on the rutting life of G_L2 reinforced pavement is significant and can be mitigated by homogenising a very thin sublayer at the subgrade surface.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001892/pdfft?md5=9400971d5f00b411de2d0b61f123fa83&pid=1-s2.0-S2214391224001892-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001892\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001892","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Influence of subgrade spatial variability on strain-alleviating ability of geogrids and rutting life in flexible pavement
This study employs the Random Field Finite Difference Analysis to assess how subgrade spatial variability impacts geogrid reinforcement’s strain-alleviating ability and the reinforced pavement’s rutting life. The geogrid’s abilities to reduce critical strains are evaluated using a strain-alleviating ratio and compared between deterministic and spatially variable scenarios. The analysis involves six geogrid reinforcement arrangements, considering two kinds of geogrid stiffness (G1 and G2) and three typical positions: top (L1), mid-depth (L1-2) and bottom (L2) of the base course. Key findings include: (a) Subgrade spatial variability significantly amplifies mean critical strains and leads to irregular strain and stress distributions, which in turn impacts the strain-alleviating ability of the geogrid reinforcements and potentially changes the optimal geogrid position. (b) The impacts of subgrade spatial variability on the geogrids’ strain-alleviating ability vary with the type of critical strains, the geogrid position, and the coefficient of variation and scale of fluctuation of subgrade modulus. When the geogrid is located at L2 (G_L2), its ability to alleviate critical subgrade strain is significantly compromised. (c) The adverse effect of subgrade spatial variability on the rutting life of G_L2 reinforced pavement is significant and can be mitigated by homogenising a very thin sublayer at the subgrade surface.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.