Yangfan Xu , Liping Pan , Yawei Li , Yichen Chen , Fangguan Tan
{"title":"利用多目标遗传算法优化分级刚玉-六铝酸钙净化塞的结构并进行热-流-固模拟","authors":"Yangfan Xu , Liping Pan , Yawei Li , Yichen Chen , Fangguan Tan","doi":"10.1016/j.jmrt.2024.09.045","DOIUrl":null,"url":null,"abstract":"<div><p>The purging plug is essential for enhancing production efficiency in molten steel refining, yet it faces challenges related to structural integrity due to its lifespan often not aligning with the ladle's repair cycle. This study introduces a novel corundum-calcium hexaluminate purging plug with gradual holes designed to alleviate internal stress concentration. Utilizing a multi-objective optimization model and fluid-solid coupling heat transfer method, the impact of structural parameters on thermal and mechanical properties was systematically investigated. The numerical simulation results indicate that increasing the number of gradient layers positively impacts temperature distribution. Notably, the D-210 (1.0 mm diameter) aperture reduces the stress gradient <span><math><mrow><mo>Δ</mo><msub><mi>σ</mi><mi>max</mi></msub></mrow></math></span> by 648.06 MPa compared to D-212 (1.2 mm diameter) at the Y = 0.313 m section. Additionally, variation in inclination angle impacts tensile stress <span><math><mrow><msub><mi>σ</mi><mi>t</mi></msub></mrow></math></span> and shear stress <span><math><mrow><mi>τ</mi></mrow></math></span>, an inclination angle of 6° (α6) reduces maximum tensile stress by 211.41 MPa compared to an angle of 0° (α0).</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 155-167"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020507/pdfft?md5=49d7681e074837d196868f27512a69b1&pid=1-s2.0-S2238785424020507-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural optimization and heat-fluid-solid simulation of a graded corundum-calcium hexaluminate purging plug by a multi-objective genetic algorithm approach\",\"authors\":\"Yangfan Xu , Liping Pan , Yawei Li , Yichen Chen , Fangguan Tan\",\"doi\":\"10.1016/j.jmrt.2024.09.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purging plug is essential for enhancing production efficiency in molten steel refining, yet it faces challenges related to structural integrity due to its lifespan often not aligning with the ladle's repair cycle. This study introduces a novel corundum-calcium hexaluminate purging plug with gradual holes designed to alleviate internal stress concentration. Utilizing a multi-objective optimization model and fluid-solid coupling heat transfer method, the impact of structural parameters on thermal and mechanical properties was systematically investigated. The numerical simulation results indicate that increasing the number of gradient layers positively impacts temperature distribution. Notably, the D-210 (1.0 mm diameter) aperture reduces the stress gradient <span><math><mrow><mo>Δ</mo><msub><mi>σ</mi><mi>max</mi></msub></mrow></math></span> by 648.06 MPa compared to D-212 (1.2 mm diameter) at the Y = 0.313 m section. Additionally, variation in inclination angle impacts tensile stress <span><math><mrow><msub><mi>σ</mi><mi>t</mi></msub></mrow></math></span> and shear stress <span><math><mrow><mi>τ</mi></mrow></math></span>, an inclination angle of 6° (α6) reduces maximum tensile stress by 211.41 MPa compared to an angle of 0° (α0).</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 155-167\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020507/pdfft?md5=49d7681e074837d196868f27512a69b1&pid=1-s2.0-S2238785424020507-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020507\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020507","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural optimization and heat-fluid-solid simulation of a graded corundum-calcium hexaluminate purging plug by a multi-objective genetic algorithm approach
The purging plug is essential for enhancing production efficiency in molten steel refining, yet it faces challenges related to structural integrity due to its lifespan often not aligning with the ladle's repair cycle. This study introduces a novel corundum-calcium hexaluminate purging plug with gradual holes designed to alleviate internal stress concentration. Utilizing a multi-objective optimization model and fluid-solid coupling heat transfer method, the impact of structural parameters on thermal and mechanical properties was systematically investigated. The numerical simulation results indicate that increasing the number of gradient layers positively impacts temperature distribution. Notably, the D-210 (1.0 mm diameter) aperture reduces the stress gradient by 648.06 MPa compared to D-212 (1.2 mm diameter) at the Y = 0.313 m section. Additionally, variation in inclination angle impacts tensile stress and shear stress , an inclination angle of 6° (α6) reduces maximum tensile stress by 211.41 MPa compared to an angle of 0° (α0).
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.