{"title":"解码翻译后修饰,了解植物的抗逆性","authors":"Anuradha Pandey, Dipak Gayen","doi":"10.1016/j.cropd.2024.100077","DOIUrl":null,"url":null,"abstract":"<div><p>Plants undergo deteriorating stress situations, which has an adverse effect on their overall growth, maturation, and development. To mitigate these situations plants undergo regulatory cellular mechanisms including epigenetic changes at both genomic as well as protein levels. Post-transcriptional as well as translational modifications of proteins enhance its dynamics and complexity along with orchestrating several cellular functions in response to external stimuli. One of the most crucial roles of Post Translational Modification is under the stress tolerance mechanisms in plants. PTM creates a fine-tuning between all regulatory networks and serves as a highly responsible phenomenon. Illustrative analysis of post-translational modification in various signaling pathways has generated new insight for designing crop cultivars towards better development with higher yield and increased tolerance. In this review, we have first introduced post-translational modification and their types. Later, we discussed the prevalent biotic-abiotic stress, plants adaptation to the stress response mechanism, and the participation of PTMs in these stress conditions to highlight better agricultural productivity.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"3 4","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772899424000260/pdfft?md5=2d21151ca4f70ac33815356a00c4ce00&pid=1-s2.0-S2772899424000260-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Decoding post-translational modifications for understanding stress tolerance in plant\",\"authors\":\"Anuradha Pandey, Dipak Gayen\",\"doi\":\"10.1016/j.cropd.2024.100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants undergo deteriorating stress situations, which has an adverse effect on their overall growth, maturation, and development. To mitigate these situations plants undergo regulatory cellular mechanisms including epigenetic changes at both genomic as well as protein levels. Post-transcriptional as well as translational modifications of proteins enhance its dynamics and complexity along with orchestrating several cellular functions in response to external stimuli. One of the most crucial roles of Post Translational Modification is under the stress tolerance mechanisms in plants. PTM creates a fine-tuning between all regulatory networks and serves as a highly responsible phenomenon. Illustrative analysis of post-translational modification in various signaling pathways has generated new insight for designing crop cultivars towards better development with higher yield and increased tolerance. In this review, we have first introduced post-translational modification and their types. Later, we discussed the prevalent biotic-abiotic stress, plants adaptation to the stress response mechanism, and the participation of PTMs in these stress conditions to highlight better agricultural productivity.</p></div>\",\"PeriodicalId\":100341,\"journal\":{\"name\":\"Crop Design\",\"volume\":\"3 4\",\"pages\":\"Article 100077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772899424000260/pdfft?md5=2d21151ca4f70ac33815356a00c4ce00&pid=1-s2.0-S2772899424000260-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772899424000260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899424000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoding post-translational modifications for understanding stress tolerance in plant
Plants undergo deteriorating stress situations, which has an adverse effect on their overall growth, maturation, and development. To mitigate these situations plants undergo regulatory cellular mechanisms including epigenetic changes at both genomic as well as protein levels. Post-transcriptional as well as translational modifications of proteins enhance its dynamics and complexity along with orchestrating several cellular functions in response to external stimuli. One of the most crucial roles of Post Translational Modification is under the stress tolerance mechanisms in plants. PTM creates a fine-tuning between all regulatory networks and serves as a highly responsible phenomenon. Illustrative analysis of post-translational modification in various signaling pathways has generated new insight for designing crop cultivars towards better development with higher yield and increased tolerance. In this review, we have first introduced post-translational modification and their types. Later, we discussed the prevalent biotic-abiotic stress, plants adaptation to the stress response mechanism, and the participation of PTMs in these stress conditions to highlight better agricultural productivity.