{"title":"量化磁共振成像导引加速器成像中放射组学特征的可重复性和纵向可重复性:模型研究","authors":"","doi":"10.1016/j.ejrad.2024.111735","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom.</p></div><div><h3>Materials and Methods</h3><p>This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %.</p></div><div><h3>Results</h3><p>Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence.</p></div><div><h3>Conclusions</h3><p>Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.</p></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the reproducibility and longitudinal repeatability of radiomics features in magnetic resonance Image-Guide accelerator Imaging: A phantom study\",\"authors\":\"\",\"doi\":\"10.1016/j.ejrad.2024.111735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom.</p></div><div><h3>Materials and Methods</h3><p>This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %.</p></div><div><h3>Results</h3><p>Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence.</p></div><div><h3>Conclusions</h3><p>Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.</p></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X24004510\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X24004510","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Quantifying the reproducibility and longitudinal repeatability of radiomics features in magnetic resonance Image-Guide accelerator Imaging: A phantom study
Objective
This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom.
Materials and Methods
This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %.
Results
Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence.
Conclusions
Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.