Michael A. Henning , Johannes Pardey , Dieter Rautenbach , Florian Werner
{"title":"莫斯塔尔指数和有界最大度","authors":"Michael A. Henning , Johannes Pardey , Dieter Rautenbach , Florian Werner","doi":"10.1016/j.disopt.2024.100861","DOIUrl":null,"url":null,"abstract":"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span>. For a graph <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> and maximum degree at most <span><math><mi>Δ</mi></math></span>, we show <span><math><mrow><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mi>n</mi><mo>log</mo><mrow><mo>(</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> only depends on <span><math><mi>Δ</mi></math></span> and the <span><math><mrow><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> term only depends on <span><math><mi>n</mi></math></span>. Furthermore, for integers <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>Δ</mi></math></span> at least 3, we show the existence of a <span><math><mi>Δ</mi></math></span>-regular graph of order <span><math><mi>n</mi></math></span> at least <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with <span><math><mrow><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msubsup><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>n</mi><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math></span> only depends on <span><math><mi>Δ</mi></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"54 ","pages":"Article 100861"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1572528624000409/pdfft?md5=e34071dea61722ee4baab21c7039f3bf&pid=1-s2.0-S1572528624000409-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mostar index and bounded maximum degree\",\"authors\":\"Michael A. Henning , Johannes Pardey , Dieter Rautenbach , Florian Werner\",\"doi\":\"10.1016/j.disopt.2024.100861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span>. For a graph <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> and maximum degree at most <span><math><mi>Δ</mi></math></span>, we show <span><math><mrow><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mi>n</mi><mo>log</mo><mrow><mo>(</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> only depends on <span><math><mi>Δ</mi></math></span> and the <span><math><mrow><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> term only depends on <span><math><mi>n</mi></math></span>. Furthermore, for integers <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>Δ</mi></math></span> at least 3, we show the existence of a <span><math><mi>Δ</mi></math></span>-regular graph of order <span><math><mi>n</mi></math></span> at least <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with <span><math><mrow><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msubsup><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>n</mi><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>Δ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math></span> only depends on <span><math><mi>Δ</mi></math></span>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"54 \",\"pages\":\"Article 100861\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000409/pdfft?md5=e34071dea61722ee4baab21c7039f3bf&pid=1-s2.0-S1572528624000409-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000409\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000409","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
Došlić 等人将图 G 的莫斯塔尔指数定义为 Mo(G)=∑uv∈E(G)|nG(u,v)-nG(v,u)| 其中,对于 G 的边 uv,nG(u,v) 表示 G 中与 u 的距离小于与 v 的距离的顶点数。对于阶数为 n、最大度数最多为 Δ 的图 G,我们证明了 Mo(G)≤Δ2n2-(1-o(1))cΔnlog(log(n)) ,其中 cΔ>0 只取决于 Δ,而 o(1) 项只取决于 n。此外,对于 n0 和 Δ 至少为 3 的整数,我们证明存在阶数至少为 n0 的 Δ 不规则图,其 Mo(G)≥Δ2n2-cΔ′nlog(n) ,其中 cΔ′>0 只取决于 Δ。
Došlić et al. defined the Mostar index of a graph as , where, for an edge of , the term denotes the number of vertices of that have a smaller distance in to than to . For a graph of order and maximum degree at most , we show where only depends on and the term only depends on . Furthermore, for integers and at least 3, we show the existence of a -regular graph of order at least with where only depends on .
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.