{"title":"匹配中稀疏和密集奇集约束的易难分离","authors":"Brady Hunsaker, Craig Tovey","doi":"10.1016/j.disopt.2024.100849","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate polytopes intermediate between the fractional matching and the perfect matching polytopes, by imposing a strict subset of the odd-set (blossom) constraints. For sparse constraints, we give a polynomial time separation algorithm if only constraints on all odd sets bounded by a given size (e.g. <span><math><mrow><mo>≤</mo><mn>9</mn><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>/</mo><mn>6</mn></mrow></math></span>) are present. Our algorithm also solves the more general problem of finding a T-cut subject to upper bounds on the cardinality of its defining node set and on its cost. In contrast, regarding dense constraints, we prove that for every <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, it is NP-complete to separate over the class of constraints on odd sets of size <span><math><mrow><mn>2</mn><mrow><mo>⌊</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>)</mo></mrow><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mo>≥</mo><mi>α</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"54 ","pages":"Article 100849"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Easy and hard separation of sparse and dense odd-set constraints in matching\",\"authors\":\"Brady Hunsaker, Craig Tovey\",\"doi\":\"10.1016/j.disopt.2024.100849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate polytopes intermediate between the fractional matching and the perfect matching polytopes, by imposing a strict subset of the odd-set (blossom) constraints. For sparse constraints, we give a polynomial time separation algorithm if only constraints on all odd sets bounded by a given size (e.g. <span><math><mrow><mo>≤</mo><mn>9</mn><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>/</mo><mn>6</mn></mrow></math></span>) are present. Our algorithm also solves the more general problem of finding a T-cut subject to upper bounds on the cardinality of its defining node set and on its cost. In contrast, regarding dense constraints, we prove that for every <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, it is NP-complete to separate over the class of constraints on odd sets of size <span><math><mrow><mn>2</mn><mrow><mo>⌊</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>)</mo></mrow><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mo>≥</mo><mi>α</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"54 \",\"pages\":\"Article 100849\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000288\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000288","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了介于分数匹配和完全匹配多边形之间的多边形,方法是施加严格的奇数集(开花)约束子集。对于稀疏约束,如果只存在以给定大小(如 ≤9+|V|/6)为边界的所有奇数集的约束,我们会给出一种多项式时间分离算法。我们的算法还能解决更普遍的问题,即根据定义节点集的万有引力和成本的上限找到 T 切。相反,关于密集约束,我们证明了对于每一个 0<α≤12,在大小为 2⌊(1+α|V|)/2⌋-1或≥α|V|的奇数集合上分离一类约束是 NP-完全的。
Easy and hard separation of sparse and dense odd-set constraints in matching
We investigate polytopes intermediate between the fractional matching and the perfect matching polytopes, by imposing a strict subset of the odd-set (blossom) constraints. For sparse constraints, we give a polynomial time separation algorithm if only constraints on all odd sets bounded by a given size (e.g. ) are present. Our algorithm also solves the more general problem of finding a T-cut subject to upper bounds on the cardinality of its defining node set and on its cost. In contrast, regarding dense constraints, we prove that for every , it is NP-complete to separate over the class of constraints on odd sets of size or .
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.