Madeleine Pascolini-Campbell , Simon Hook , Kanishka Mallick , Mary Langsdale , Glynn Hulley , Kerry Cawse-Nicholson , Tian Hu , Gregory Halverson , Robert Freepartner , Gerardo Rivera , Lorenzo Genesio , Federico Rabuffi
{"title":"首次评估基于机载 HyTES 的地表温度和蒸散量","authors":"Madeleine Pascolini-Campbell , Simon Hook , Kanishka Mallick , Mary Langsdale , Glynn Hulley , Kerry Cawse-Nicholson , Tian Hu , Gregory Halverson , Robert Freepartner , Gerardo Rivera , Lorenzo Genesio , Federico Rabuffi","doi":"10.1016/j.rsase.2024.101344","DOIUrl":null,"url":null,"abstract":"<div><p>The Hyperspectral Thermal Emission Spectrometer (HyTES) offers high spatial and spectral resolution thermal infrared (TIR) airborne measurements, which are crucial for deriving land surface temperature and emissivity (LST&E). These measurements have wide-ranging applications, particularly in understanding water stress and plant water use. One critical application of TIR satellite-sensor systems is the estimation of evapotranspiration (ET), which can be derived from LST. ET is essential for modeling water fluxes from the land surface, and various algorithms leverage LST as a key boundary condition for this purpose. In this study, we apply an ET algorithm to HyTES LST data for the first time, using an analytical surface energy balance model, the Surface Temperature Initiated Closure (STIC) version 1.3. We provide an overview of the STIC model, detailing its application to HyTES data, including the integration of ancillary datasets. We demonstrate the practicality of this approach by presenting ET and LST calculations for HyTES flightlines from three field campaigns conducted in 2019, 2021, and 2023. To validate our results, we compare the derived ET and LST against available in situ measurements, including eddy covariance-derived latent heat flux and radiometer-derived LST. While this study focuses on HyTES data, the same methodology is applicable to any instantaneous LST dataset. Advancing TIR mapping of ET is crucial for applications in agriculture, water management and for understanding the evolving water cycle.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101344"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first assessment of airborne HyTES-based land surface temperature and evapotranspiration\",\"authors\":\"Madeleine Pascolini-Campbell , Simon Hook , Kanishka Mallick , Mary Langsdale , Glynn Hulley , Kerry Cawse-Nicholson , Tian Hu , Gregory Halverson , Robert Freepartner , Gerardo Rivera , Lorenzo Genesio , Federico Rabuffi\",\"doi\":\"10.1016/j.rsase.2024.101344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Hyperspectral Thermal Emission Spectrometer (HyTES) offers high spatial and spectral resolution thermal infrared (TIR) airborne measurements, which are crucial for deriving land surface temperature and emissivity (LST&E). These measurements have wide-ranging applications, particularly in understanding water stress and plant water use. One critical application of TIR satellite-sensor systems is the estimation of evapotranspiration (ET), which can be derived from LST. ET is essential for modeling water fluxes from the land surface, and various algorithms leverage LST as a key boundary condition for this purpose. In this study, we apply an ET algorithm to HyTES LST data for the first time, using an analytical surface energy balance model, the Surface Temperature Initiated Closure (STIC) version 1.3. We provide an overview of the STIC model, detailing its application to HyTES data, including the integration of ancillary datasets. We demonstrate the practicality of this approach by presenting ET and LST calculations for HyTES flightlines from three field campaigns conducted in 2019, 2021, and 2023. To validate our results, we compare the derived ET and LST against available in situ measurements, including eddy covariance-derived latent heat flux and radiometer-derived LST. While this study focuses on HyTES data, the same methodology is applicable to any instantaneous LST dataset. Advancing TIR mapping of ET is crucial for applications in agriculture, water management and for understanding the evolving water cycle.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101344\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A first assessment of airborne HyTES-based land surface temperature and evapotranspiration
The Hyperspectral Thermal Emission Spectrometer (HyTES) offers high spatial and spectral resolution thermal infrared (TIR) airborne measurements, which are crucial for deriving land surface temperature and emissivity (LST&E). These measurements have wide-ranging applications, particularly in understanding water stress and plant water use. One critical application of TIR satellite-sensor systems is the estimation of evapotranspiration (ET), which can be derived from LST. ET is essential for modeling water fluxes from the land surface, and various algorithms leverage LST as a key boundary condition for this purpose. In this study, we apply an ET algorithm to HyTES LST data for the first time, using an analytical surface energy balance model, the Surface Temperature Initiated Closure (STIC) version 1.3. We provide an overview of the STIC model, detailing its application to HyTES data, including the integration of ancillary datasets. We demonstrate the practicality of this approach by presenting ET and LST calculations for HyTES flightlines from three field campaigns conducted in 2019, 2021, and 2023. To validate our results, we compare the derived ET and LST against available in situ measurements, including eddy covariance-derived latent heat flux and radiometer-derived LST. While this study focuses on HyTES data, the same methodology is applicable to any instantaneous LST dataset. Advancing TIR mapping of ET is crucial for applications in agriculture, water management and for understanding the evolving water cycle.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems