Md. Moklesur Rahman*, Marc Peipoch, Jinjun Kan, Matthew Sena, Bisesh Joshi, Dipankar Dwivedi, Arthur J. Gold, Peter M. Groffman, Joseph G. Galella and Shreeram Inamdar,
{"title":"异氨硝酸盐还原(DNRA)会削弱持续还原的河岸沉积物的脱氮效果","authors":"Md. Moklesur Rahman*, Marc Peipoch, Jinjun Kan, Matthew Sena, Bisesh Joshi, Dipankar Dwivedi, Arthur J. Gold, Peter M. Groffman, Joseph G. Galella and Shreeram Inamdar, ","doi":"10.1021/acsestwater.4c0018510.1021/acsestwater.4c00185","DOIUrl":null,"url":null,"abstract":"<p >Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) compete in reducing sediment conditions where DNF permanently removes nitrogen (N), while DNRA retains N with the conversion of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonium (NH<sub>4</sub><sup>+</sup>). Thus, an increase in the level of DNRA can undermine permanent N removal. We investigated the relative magnitude and controls of these two processes at two milldam-affected riparian sites. DNRA (5.2–37.6 μg L<sup>–1</sup> h<sup>–1</sup>) accounted for 10–79% of total NO<sub>3</sub><sup>–</sup> reduction and was highest in riparian sediments with higher iron (Fe) and sodium (Na<sup>+</sup>) in groundwater. DNF was the primary mechanism for NO<sub>3</sub><sup>–</sup> reduction when Fe and Na<sup>+</sup> concentrations were low but when NO<sub>3</sub><sup>–</sup> was elevated. DNRA rates were higher for treatments with higher dissolved organic carbon (DOC):NO<sub>3</sub><sup>–</sup> and Fe:NO<sub>3</sub><sup>–</sup> ratios, indicating the stimulation of both heterotrophic and Fe<sup>2+</sup> driven autotrophic DNRA. DNF and DNRA rates and their microbial functional genes decreased with increasing sediment depths. These findings imply that hydrologically stagnant and persistently reducing conditions associated with relict milldams and similar anthropogenic structures may enhance DNRA at the expense of DNF and undermine permanent N removal in riparian zones. Thus, the effects of such structures need to be accounted for in watershed N management strategies.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 9","pages":"3873–3881 3873–3881"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissimilatory Nitrate Reduction to Ammonium (DNRA) Can Undermine Nitrogen Removal Effectiveness of Persistently Reducing Riparian Sediments\",\"authors\":\"Md. Moklesur Rahman*, Marc Peipoch, Jinjun Kan, Matthew Sena, Bisesh Joshi, Dipankar Dwivedi, Arthur J. Gold, Peter M. Groffman, Joseph G. Galella and Shreeram Inamdar, \",\"doi\":\"10.1021/acsestwater.4c0018510.1021/acsestwater.4c00185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) compete in reducing sediment conditions where DNF permanently removes nitrogen (N), while DNRA retains N with the conversion of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonium (NH<sub>4</sub><sup>+</sup>). Thus, an increase in the level of DNRA can undermine permanent N removal. We investigated the relative magnitude and controls of these two processes at two milldam-affected riparian sites. DNRA (5.2–37.6 μg L<sup>–1</sup> h<sup>–1</sup>) accounted for 10–79% of total NO<sub>3</sub><sup>–</sup> reduction and was highest in riparian sediments with higher iron (Fe) and sodium (Na<sup>+</sup>) in groundwater. DNF was the primary mechanism for NO<sub>3</sub><sup>–</sup> reduction when Fe and Na<sup>+</sup> concentrations were low but when NO<sub>3</sub><sup>–</sup> was elevated. DNRA rates were higher for treatments with higher dissolved organic carbon (DOC):NO<sub>3</sub><sup>–</sup> and Fe:NO<sub>3</sub><sup>–</sup> ratios, indicating the stimulation of both heterotrophic and Fe<sup>2+</sup> driven autotrophic DNRA. DNF and DNRA rates and their microbial functional genes decreased with increasing sediment depths. These findings imply that hydrologically stagnant and persistently reducing conditions associated with relict milldams and similar anthropogenic structures may enhance DNRA at the expense of DNF and undermine permanent N removal in riparian zones. Thus, the effects of such structures need to be accounted for in watershed N management strategies.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"4 9\",\"pages\":\"3873–3881 3873–3881\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.4c00185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dissimilatory Nitrate Reduction to Ammonium (DNRA) Can Undermine Nitrogen Removal Effectiveness of Persistently Reducing Riparian Sediments
Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) compete in reducing sediment conditions where DNF permanently removes nitrogen (N), while DNRA retains N with the conversion of nitrate (NO3–) to ammonium (NH4+). Thus, an increase in the level of DNRA can undermine permanent N removal. We investigated the relative magnitude and controls of these two processes at two milldam-affected riparian sites. DNRA (5.2–37.6 μg L–1 h–1) accounted for 10–79% of total NO3– reduction and was highest in riparian sediments with higher iron (Fe) and sodium (Na+) in groundwater. DNF was the primary mechanism for NO3– reduction when Fe and Na+ concentrations were low but when NO3– was elevated. DNRA rates were higher for treatments with higher dissolved organic carbon (DOC):NO3– and Fe:NO3– ratios, indicating the stimulation of both heterotrophic and Fe2+ driven autotrophic DNRA. DNF and DNRA rates and their microbial functional genes decreased with increasing sediment depths. These findings imply that hydrologically stagnant and persistently reducing conditions associated with relict milldams and similar anthropogenic structures may enhance DNRA at the expense of DNF and undermine permanent N removal in riparian zones. Thus, the effects of such structures need to be accounted for in watershed N management strategies.