利用机器学习为东南亚地区设计地下湿地的未来方法

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Saurabh Singh*, Gourav Suthar, Niha Mohan Kulshreshtha, Urmila Brighu, Achintya N Bezbaruah and Akhilendra Bhushan Gupta*, 
{"title":"利用机器学习为东南亚地区设计地下湿地的未来方法","authors":"Saurabh Singh*,&nbsp;Gourav Suthar,&nbsp;Niha Mohan Kulshreshtha,&nbsp;Urmila Brighu,&nbsp;Achintya N Bezbaruah and Akhilendra Bhushan Gupta*,&nbsp;","doi":"10.1021/acsestwater.4c0034610.1021/acsestwater.4c00346","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the optimized design of horizontal flow constructed wetlands (HFCWs) to enhance pollutant removal efficiency while minimizing surface area requirements, particularly in the Southeast Asian region. By refining the first-order removal rate coefficient (<i>k</i>) for organics and nutrients, the research aims to meet specific performance benchmarks across three scenarios, ensuring compliance with discharge or reuse standards. Utilizing a data set comprising 1680 entries, five machine learning models─multiple linear regression (MLR), eXtreme Gradient Boosting (XGBoost), random forest (RF), artificial neural network (ANN), and support vector regression (SVR)─were employed to predict <i>k</i> values. Pearson’s correlation, heat maps, and ANOVA analysis identified the most influential parameters affecting <i>k</i>-value predictions. The <i>k</i> values ranged from 0.01 to 0.52 per day using the <i>P</i>–<i>k</i>–<i>C</i>* method, essential for effective pollutant removal. The SVR model demonstrated the highest predictive accuracy, with <i>R</i><sup>2</sup> values of 0.91 for <i>k</i><sub>BOD</sub>, 0.90 for <i>k</i><sub>TN</sub>, 0.82 for <i>k</i><sub>TKN</sub>, and 0.76 for <i>k</i><sub>TP</sub>. This optimization reduced standard deviations significantly, from 136.90% to 2.28%. Consequently, the required wetland area was reduced by up to 68% for biochemical oxygen demand (BOD), 60% for TN (total nitrogen), and 67% for TP (total phosphorus) in larger systems, supporting the tailored design of HFCWs to meet targeted discharge standards.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 9","pages":"4061–4074 4061–4074"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Futuristic Approach to Subsurface-Constructed Wetland Design for the South-East Asian Region Using Machine Learning\",\"authors\":\"Saurabh Singh*,&nbsp;Gourav Suthar,&nbsp;Niha Mohan Kulshreshtha,&nbsp;Urmila Brighu,&nbsp;Achintya N Bezbaruah and Akhilendra Bhushan Gupta*,&nbsp;\",\"doi\":\"10.1021/acsestwater.4c0034610.1021/acsestwater.4c00346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the optimized design of horizontal flow constructed wetlands (HFCWs) to enhance pollutant removal efficiency while minimizing surface area requirements, particularly in the Southeast Asian region. By refining the first-order removal rate coefficient (<i>k</i>) for organics and nutrients, the research aims to meet specific performance benchmarks across three scenarios, ensuring compliance with discharge or reuse standards. Utilizing a data set comprising 1680 entries, five machine learning models─multiple linear regression (MLR), eXtreme Gradient Boosting (XGBoost), random forest (RF), artificial neural network (ANN), and support vector regression (SVR)─were employed to predict <i>k</i> values. Pearson’s correlation, heat maps, and ANOVA analysis identified the most influential parameters affecting <i>k</i>-value predictions. The <i>k</i> values ranged from 0.01 to 0.52 per day using the <i>P</i>–<i>k</i>–<i>C</i>* method, essential for effective pollutant removal. The SVR model demonstrated the highest predictive accuracy, with <i>R</i><sup>2</sup> values of 0.91 for <i>k</i><sub>BOD</sub>, 0.90 for <i>k</i><sub>TN</sub>, 0.82 for <i>k</i><sub>TKN</sub>, and 0.76 for <i>k</i><sub>TP</sub>. This optimization reduced standard deviations significantly, from 136.90% to 2.28%. Consequently, the required wetland area was reduced by up to 68% for biochemical oxygen demand (BOD), 60% for TN (total nitrogen), and 67% for TP (total phosphorus) in larger systems, supporting the tailored design of HFCWs to meet targeted discharge standards.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"4 9\",\"pages\":\"4061–4074 4061–4074\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.4c00346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了水平流人工湿地 (HFCW) 的优化设计,以提高污染物去除效率,同时最大限度地减少表面积要求,尤其是在东南亚地区。通过改进有机物和营养物的一阶去除率系数 (k),该研究旨在满足三种情况下的特定性能基准,确保符合排放或再利用标准。利用由 1680 个条目组成的数据集,采用了五种机器学习模型 - 多元线性回归 (MLR)、极梯度提升 (XGBoost)、随机森林 (RF)、人工神经网络 (ANN) 和支持向量回归 (SVR) - 来预测 k 值。皮尔逊相关性、热图和方差分析确定了对 k 值预测影响最大的参数。使用 P-k-C* 方法得出的 k 值范围为每天 0.01 到 0.52,这对有效去除污染物至关重要。SVR 模型的预测精度最高,kBOD 的 R2 值为 0.91,kTN 为 0.90,kTKN 为 0.82,kTP 为 0.76。这一优化大大降低了标准偏差,从 136.90% 降至 2.28%。因此,在较大的系统中,生化需氧量(BOD)、总氮(TN)和总磷(TP)所需的湿地面积分别减少了 68%、60% 和 67%,从而支持了 HFCWs 的定制设计,以达到目标排放标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Futuristic Approach to Subsurface-Constructed Wetland Design for the South-East Asian Region Using Machine Learning

A Futuristic Approach to Subsurface-Constructed Wetland Design for the South-East Asian Region Using Machine Learning

This study investigates the optimized design of horizontal flow constructed wetlands (HFCWs) to enhance pollutant removal efficiency while minimizing surface area requirements, particularly in the Southeast Asian region. By refining the first-order removal rate coefficient (k) for organics and nutrients, the research aims to meet specific performance benchmarks across three scenarios, ensuring compliance with discharge or reuse standards. Utilizing a data set comprising 1680 entries, five machine learning models─multiple linear regression (MLR), eXtreme Gradient Boosting (XGBoost), random forest (RF), artificial neural network (ANN), and support vector regression (SVR)─were employed to predict k values. Pearson’s correlation, heat maps, and ANOVA analysis identified the most influential parameters affecting k-value predictions. The k values ranged from 0.01 to 0.52 per day using the PkC* method, essential for effective pollutant removal. The SVR model demonstrated the highest predictive accuracy, with R2 values of 0.91 for kBOD, 0.90 for kTN, 0.82 for kTKN, and 0.76 for kTP. This optimization reduced standard deviations significantly, from 136.90% to 2.28%. Consequently, the required wetland area was reduced by up to 68% for biochemical oxygen demand (BOD), 60% for TN (total nitrogen), and 67% for TP (total phosphorus) in larger systems, supporting the tailored design of HFCWs to meet targeted discharge standards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信