Jolien De Neve, Émile Breault, Santo Previti, Esaü Vangeloven, Bobbi Loranger, Magali Chartier, Rebecca Brouillette, Annik Lanoie, Brian J. Holleran, Jean-Michel Longpré, Louis Gendron, Dirk Tourwé, Philippe Sarret* and Steven Ballet*,
{"title":"蛋白水解稳定的阿片-神经紧张素混合肽模拟物的设计、合成和体外表征","authors":"Jolien De Neve, Émile Breault, Santo Previti, Esaü Vangeloven, Bobbi Loranger, Magali Chartier, Rebecca Brouillette, Annik Lanoie, Brian J. Holleran, Jean-Michel Longpré, Louis Gendron, Dirk Tourwé, Philippe Sarret* and Steven Ballet*, ","doi":"10.1021/acsptsci.4c0023610.1021/acsptsci.4c00236","DOIUrl":null,"url":null,"abstract":"<p >Linking an opioid to a nonopioid pharmacophore represents a promising approach for reducing opioid-induced side effects during pain management. Herein, we describe the optimization of the previously reported opioid-neurotensin hybrids (OPNT-hybrids), <b>SBL-OPNT-05</b> & <b>-10</b>, containing the μ-/δ-opioid agonist H-Dmt-<span>d</span>-Arg-Aba-β-Ala-NH<sub>2</sub> and NT(8–13) analogs optimized for NTS2 affinity. In the present work, the constrained dipeptide Aba-β-Ala was modified to investigate the optimal linker length between the two pharmacophores, as well as the effect of expanding the aromatic moiety within constrained dipeptide analogs, via the inclusion of a naphthyl moiety. Additionally, the <i>N</i>-terminal Arg residue of the NT(8–13) pharmacophore was substituted with β<sup>3</sup><i>h</i>Arg. For all analogs, affinity was determined at the MOP, DOP, NTS1, and NTS2 receptors. Several of the hybrid ligands showed a subnanomolar affinity for MOP, improved binding for DOP compared to <b>SBL-OPNT-05</b> & <b>-10</b>, as well as an excellent NTS2-affinity with high selectivity over NTS1. Subsequently, the G<sub>αi1</sub> and β-arrestin-2 pathways were evaluated for all hybrids, along with their stability in rat plasma. Upon MOP activation, <b>SBL-OPNT-13</b> and <b>-18</b> were the least effective at recruiting β-arrestin-2 (<i>E</i><sub>max</sub> = 17 and 12%, respectively), while both compounds were also found to be partial agonists at the G<sub>αi1</sub> pathway, despite improved potency compared to DAMGO. Importantly, these analogs also showed a half-life in rat plasma in excess of 48 h, making them valuable tools for future <i>in vivo</i> investigations.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2784–2798 2784–2798"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and In Vitro Characterization of Proteolytically-Stable Opioid-Neurotensin Hybrid Peptidomimetics\",\"authors\":\"Jolien De Neve, Émile Breault, Santo Previti, Esaü Vangeloven, Bobbi Loranger, Magali Chartier, Rebecca Brouillette, Annik Lanoie, Brian J. Holleran, Jean-Michel Longpré, Louis Gendron, Dirk Tourwé, Philippe Sarret* and Steven Ballet*, \",\"doi\":\"10.1021/acsptsci.4c0023610.1021/acsptsci.4c00236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Linking an opioid to a nonopioid pharmacophore represents a promising approach for reducing opioid-induced side effects during pain management. Herein, we describe the optimization of the previously reported opioid-neurotensin hybrids (OPNT-hybrids), <b>SBL-OPNT-05</b> & <b>-10</b>, containing the μ-/δ-opioid agonist H-Dmt-<span>d</span>-Arg-Aba-β-Ala-NH<sub>2</sub> and NT(8–13) analogs optimized for NTS2 affinity. In the present work, the constrained dipeptide Aba-β-Ala was modified to investigate the optimal linker length between the two pharmacophores, as well as the effect of expanding the aromatic moiety within constrained dipeptide analogs, via the inclusion of a naphthyl moiety. Additionally, the <i>N</i>-terminal Arg residue of the NT(8–13) pharmacophore was substituted with β<sup>3</sup><i>h</i>Arg. For all analogs, affinity was determined at the MOP, DOP, NTS1, and NTS2 receptors. Several of the hybrid ligands showed a subnanomolar affinity for MOP, improved binding for DOP compared to <b>SBL-OPNT-05</b> & <b>-10</b>, as well as an excellent NTS2-affinity with high selectivity over NTS1. Subsequently, the G<sub>αi1</sub> and β-arrestin-2 pathways were evaluated for all hybrids, along with their stability in rat plasma. Upon MOP activation, <b>SBL-OPNT-13</b> and <b>-18</b> were the least effective at recruiting β-arrestin-2 (<i>E</i><sub>max</sub> = 17 and 12%, respectively), while both compounds were also found to be partial agonists at the G<sub>αi1</sub> pathway, despite improved potency compared to DAMGO. Importantly, these analogs also showed a half-life in rat plasma in excess of 48 h, making them valuable tools for future <i>in vivo</i> investigations.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 9\",\"pages\":\"2784–2798 2784–2798\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, Synthesis, and In Vitro Characterization of Proteolytically-Stable Opioid-Neurotensin Hybrid Peptidomimetics
Linking an opioid to a nonopioid pharmacophore represents a promising approach for reducing opioid-induced side effects during pain management. Herein, we describe the optimization of the previously reported opioid-neurotensin hybrids (OPNT-hybrids), SBL-OPNT-05 & -10, containing the μ-/δ-opioid agonist H-Dmt-d-Arg-Aba-β-Ala-NH2 and NT(8–13) analogs optimized for NTS2 affinity. In the present work, the constrained dipeptide Aba-β-Ala was modified to investigate the optimal linker length between the two pharmacophores, as well as the effect of expanding the aromatic moiety within constrained dipeptide analogs, via the inclusion of a naphthyl moiety. Additionally, the N-terminal Arg residue of the NT(8–13) pharmacophore was substituted with β3hArg. For all analogs, affinity was determined at the MOP, DOP, NTS1, and NTS2 receptors. Several of the hybrid ligands showed a subnanomolar affinity for MOP, improved binding for DOP compared to SBL-OPNT-05 & -10, as well as an excellent NTS2-affinity with high selectivity over NTS1. Subsequently, the Gαi1 and β-arrestin-2 pathways were evaluated for all hybrids, along with their stability in rat plasma. Upon MOP activation, SBL-OPNT-13 and -18 were the least effective at recruiting β-arrestin-2 (Emax = 17 and 12%, respectively), while both compounds were also found to be partial agonists at the Gαi1 pathway, despite improved potency compared to DAMGO. Importantly, these analogs also showed a half-life in rat plasma in excess of 48 h, making them valuable tools for future in vivo investigations.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.