Isabella M. Dressel, Sixuan Zhang, Mary Angelique G. Demetillo, Shan Yu, Kimberly Fields, Laura M. Judd, Caroline R. Nowlan, Kang Sun, Alexander Kotsakis, Alexander J. Turner and Sally E. Pusede*,
{"title":"德克萨斯州休斯顿市邻里层面的二氧化氮不平等导致了地表臭氧的多变性","authors":"Isabella M. Dressel, Sixuan Zhang, Mary Angelique G. Demetillo, Shan Yu, Kimberly Fields, Laura M. Judd, Caroline R. Nowlan, Kang Sun, Alexander Kotsakis, Alexander J. Turner and Sally E. Pusede*, ","doi":"10.1021/acsestair.4c0000910.1021/acsestair.4c00009","DOIUrl":null,"url":null,"abstract":"<p >In Houston, Texas, nitrogen dioxide (NO<sub>2</sub>) air pollution disproportionately affects Black, Latinx, and Asian communities, and high ozone (O<sub>3</sub>) days are frequent. There is limited knowledge of how NO<sub>2</sub> inequalities vary in urban air quality contexts, in part from the lack of time-varying neighborhood-level NO<sub>2</sub> measurements. First, we demonstrate that daily TROPOspheric Monitoring Instrument (TROPOMI) NO<sub>2</sub> tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale NO<sub>2</sub> inequalities in Houston, comparing NO<sub>2</sub> inequalities based on TROPOMI TVCDs and spatiotemporally coincident airborne remote sensing (250 m × 560 m) from the NASA TRacking Aerosol Convection ExpeRiment–Air Quality (TRACER-AQ). We further evaluate the application of daily TROPOMI TVCDs to census tract-scale NO<sub>2</sub> inequalities (May 2018–November 2022). This includes explaining differences between mean daily NO<sub>2</sub> inequalities and those based on TVCDs oversampled to 0.01° × 0.01° and showing daily NO<sub>2</sub> column-surface relationships weaken as a function of observation separation distance. Second, census tract-scale NO<sub>2</sub> inequalities, city-wide high O<sub>3</sub>, and mesoscale airflows are found to covary using principal component and cluster analysis. A generalized additive model of O<sub>3</sub> mixing ratios versus NO<sub>2</sub> inequalities reproduces established nonlinear relationships between O<sub>3</sub> production and NO<sub>2</sub> concentrations, providing observational evidence that neighborhood-level NO<sub>2</sub> inequalities and O<sub>3</sub> are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian communities will have co-benefits, reducing both NO<sub>2</sub> disparities and high O<sub>3</sub> days city wide.</p><p >Most neighborhood-level NO<sub>2</sub> inequalities can be observed with daily TROPOspheric Monitoring Instrument (TROPOMI) observations; the unequal NO<sub>2</sub> distribution affects O<sub>3</sub> chemistry in Houston, Texas.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 9","pages":"973–988 973–988"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00009","citationCount":"0","resultStr":"{\"title\":\"Neighborhood-Level Nitrogen Dioxide Inequalities Contribute to Surface Ozone Variability in Houston, Texas\",\"authors\":\"Isabella M. Dressel, Sixuan Zhang, Mary Angelique G. Demetillo, Shan Yu, Kimberly Fields, Laura M. Judd, Caroline R. Nowlan, Kang Sun, Alexander Kotsakis, Alexander J. Turner and Sally E. Pusede*, \",\"doi\":\"10.1021/acsestair.4c0000910.1021/acsestair.4c00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In Houston, Texas, nitrogen dioxide (NO<sub>2</sub>) air pollution disproportionately affects Black, Latinx, and Asian communities, and high ozone (O<sub>3</sub>) days are frequent. There is limited knowledge of how NO<sub>2</sub> inequalities vary in urban air quality contexts, in part from the lack of time-varying neighborhood-level NO<sub>2</sub> measurements. First, we demonstrate that daily TROPOspheric Monitoring Instrument (TROPOMI) NO<sub>2</sub> tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale NO<sub>2</sub> inequalities in Houston, comparing NO<sub>2</sub> inequalities based on TROPOMI TVCDs and spatiotemporally coincident airborne remote sensing (250 m × 560 m) from the NASA TRacking Aerosol Convection ExpeRiment–Air Quality (TRACER-AQ). We further evaluate the application of daily TROPOMI TVCDs to census tract-scale NO<sub>2</sub> inequalities (May 2018–November 2022). This includes explaining differences between mean daily NO<sub>2</sub> inequalities and those based on TVCDs oversampled to 0.01° × 0.01° and showing daily NO<sub>2</sub> column-surface relationships weaken as a function of observation separation distance. Second, census tract-scale NO<sub>2</sub> inequalities, city-wide high O<sub>3</sub>, and mesoscale airflows are found to covary using principal component and cluster analysis. A generalized additive model of O<sub>3</sub> mixing ratios versus NO<sub>2</sub> inequalities reproduces established nonlinear relationships between O<sub>3</sub> production and NO<sub>2</sub> concentrations, providing observational evidence that neighborhood-level NO<sub>2</sub> inequalities and O<sub>3</sub> are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian communities will have co-benefits, reducing both NO<sub>2</sub> disparities and high O<sub>3</sub> days city wide.</p><p >Most neighborhood-level NO<sub>2</sub> inequalities can be observed with daily TROPOspheric Monitoring Instrument (TROPOMI) observations; the unequal NO<sub>2</sub> distribution affects O<sub>3</sub> chemistry in Houston, Texas.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"1 9\",\"pages\":\"973–988 973–988\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neighborhood-Level Nitrogen Dioxide Inequalities Contribute to Surface Ozone Variability in Houston, Texas
In Houston, Texas, nitrogen dioxide (NO2) air pollution disproportionately affects Black, Latinx, and Asian communities, and high ozone (O3) days are frequent. There is limited knowledge of how NO2 inequalities vary in urban air quality contexts, in part from the lack of time-varying neighborhood-level NO2 measurements. First, we demonstrate that daily TROPOspheric Monitoring Instrument (TROPOMI) NO2 tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale NO2 inequalities in Houston, comparing NO2 inequalities based on TROPOMI TVCDs and spatiotemporally coincident airborne remote sensing (250 m × 560 m) from the NASA TRacking Aerosol Convection ExpeRiment–Air Quality (TRACER-AQ). We further evaluate the application of daily TROPOMI TVCDs to census tract-scale NO2 inequalities (May 2018–November 2022). This includes explaining differences between mean daily NO2 inequalities and those based on TVCDs oversampled to 0.01° × 0.01° and showing daily NO2 column-surface relationships weaken as a function of observation separation distance. Second, census tract-scale NO2 inequalities, city-wide high O3, and mesoscale airflows are found to covary using principal component and cluster analysis. A generalized additive model of O3 mixing ratios versus NO2 inequalities reproduces established nonlinear relationships between O3 production and NO2 concentrations, providing observational evidence that neighborhood-level NO2 inequalities and O3 are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian communities will have co-benefits, reducing both NO2 disparities and high O3 days city wide.
Most neighborhood-level NO2 inequalities can be observed with daily TROPOspheric Monitoring Instrument (TROPOMI) observations; the unequal NO2 distribution affects O3 chemistry in Houston, Texas.