预测大气气溶胶成分饱和蒸气压的机器学习模型

Noora Hyttinen*, Linjie Li, Mattias Hallquist and Cheng Wu, 
{"title":"预测大气气溶胶成分饱和蒸气压的机器学习模型","authors":"Noora Hyttinen*,&nbsp;Linjie Li,&nbsp;Mattias Hallquist and Cheng Wu,&nbsp;","doi":"10.1021/acsestair.4c0011310.1021/acsestair.4c00113","DOIUrl":null,"url":null,"abstract":"<p >We present a novel machine learning (ML) model for predicting saturation vapor pressures (<i>p</i><sub>sat</sub>), a physical property of use to describe transport, distribution, mass transfer, and fate of environmental toxins and contaminants. The ML model uses σ-profiles from the conductor-like screening model (COSMO) as molecular descriptors. The main advantages in using σ-profiles instead of other types of molecular representations are the relatively small size of the descriptor and the fact that the addition of new elements does not affect the size of the descriptor. The ML model was trained separately for liquid and solid compounds using experimental vapor pressures at various temperatures. The 95% confidence intervals of the error in the liquid- and solid-phase log<sub>10</sub>(<i>p</i><sub>sat</sub>/Pa) are 1.02 and 1.4, respectively. Especially our solid-phase model outperforms all group-contribution models in predicting experimental sublimation pressures of solid compounds. To demonstrate its applicability, the model was used to predict <i>p</i><sub>sat</sub> of atmospherically relevant species, and the values were compared with those obtained from a new experimental method. Here, our model provided a tool for a better description of this critical property and gave a higher confidence in the measurements.</p><p >Accurate saturation vapor pressure estimates of environmental contaminants are lacking in the low volatility range. Our quantum chemistry-based machine learning model provides a novel tool for predicting vapor pressure.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 9","pages":"1156–1163 1156–1163"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00113","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents\",\"authors\":\"Noora Hyttinen*,&nbsp;Linjie Li,&nbsp;Mattias Hallquist and Cheng Wu,&nbsp;\",\"doi\":\"10.1021/acsestair.4c0011310.1021/acsestair.4c00113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present a novel machine learning (ML) model for predicting saturation vapor pressures (<i>p</i><sub>sat</sub>), a physical property of use to describe transport, distribution, mass transfer, and fate of environmental toxins and contaminants. The ML model uses σ-profiles from the conductor-like screening model (COSMO) as molecular descriptors. The main advantages in using σ-profiles instead of other types of molecular representations are the relatively small size of the descriptor and the fact that the addition of new elements does not affect the size of the descriptor. The ML model was trained separately for liquid and solid compounds using experimental vapor pressures at various temperatures. The 95% confidence intervals of the error in the liquid- and solid-phase log<sub>10</sub>(<i>p</i><sub>sat</sub>/Pa) are 1.02 and 1.4, respectively. Especially our solid-phase model outperforms all group-contribution models in predicting experimental sublimation pressures of solid compounds. To demonstrate its applicability, the model was used to predict <i>p</i><sub>sat</sub> of atmospherically relevant species, and the values were compared with those obtained from a new experimental method. Here, our model provided a tool for a better description of this critical property and gave a higher confidence in the measurements.</p><p >Accurate saturation vapor pressure estimates of environmental contaminants are lacking in the low volatility range. Our quantum chemistry-based machine learning model provides a novel tool for predicting vapor pressure.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"1 9\",\"pages\":\"1156–1163 1156–1163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的机器学习(ML)模型,用于预测饱和蒸汽压(psat),这是一种用于描述环境毒素和污染物的迁移、分布、传质和归宿的物理特性。该 ML 模型使用类导体筛选模型 (COSMO) 中的σ-profiles 作为分子描述符。使用 σ-profiles 而不是其他类型的分子描述符的主要优点是描述符的大小相对较小,而且添加新元素不会影响描述符的大小。利用不同温度下的实验蒸汽压,分别对液态和固态化合物进行了 ML 模型训练。液相和固相 log10(psat/Pa) 误差的 95% 置信区间分别为 1.02 和 1.4。在预测固体化合物的实验升华压力方面,我们的固相模型尤其优于所有的基团贡献模型。为了证明该模型的适用性,我们使用该模型预测了大气中相关物种的 psat 值,并将其与一种新的实验方法得出的值进行了比较。在此,我们的模型为更好地描述这一关键特性提供了工具,并提高了测量结果的可信度。我们基于量子化学的机器学习模型为预测蒸气压提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents

Machine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents

We present a novel machine learning (ML) model for predicting saturation vapor pressures (psat), a physical property of use to describe transport, distribution, mass transfer, and fate of environmental toxins and contaminants. The ML model uses σ-profiles from the conductor-like screening model (COSMO) as molecular descriptors. The main advantages in using σ-profiles instead of other types of molecular representations are the relatively small size of the descriptor and the fact that the addition of new elements does not affect the size of the descriptor. The ML model was trained separately for liquid and solid compounds using experimental vapor pressures at various temperatures. The 95% confidence intervals of the error in the liquid- and solid-phase log10(psat/Pa) are 1.02 and 1.4, respectively. Especially our solid-phase model outperforms all group-contribution models in predicting experimental sublimation pressures of solid compounds. To demonstrate its applicability, the model was used to predict psat of atmospherically relevant species, and the values were compared with those obtained from a new experimental method. Here, our model provided a tool for a better description of this critical property and gave a higher confidence in the measurements.

Accurate saturation vapor pressure estimates of environmental contaminants are lacking in the low volatility range. Our quantum chemistry-based machine learning model provides a novel tool for predicting vapor pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信