{"title":"在汉密尔顿的临时随机群体模型中破解囚徒困境陷阱","authors":"José F. Fontanari , Mauro Santos","doi":"10.1016/j.jtbi.2024.111946","DOIUrl":null,"url":null,"abstract":"<div><p>Explaining the evolution of cooperation in the strong altruism scenario, where a cooperator does not benefit from her contribution to the public goods, is a challenging problem that requires positive assortment among cooperators (i.e., cooperators must tend to associate with other cooperators) or punishment of defectors. The need for these drastic measures stems from the analysis of a group selection model of temporarily formed random groups introduced by Hamilton nearly fifty years ago to describe the fate of altruistic behavior in a population. Challenging conventional wisdom, we show analytically here that strong altruism evolves in Hamilton’s original model in the case of biparental sexual reproduction. Moreover, when the cost of cooperation is small and the amplified contribution shared by group members is large, cooperation is the only stable strategy in equilibrium. Thus, our results provide a solution to the ‘problem of origination’ of strong altruism, i.e. how cooperation can take off from an initial low frequency of cooperators. We discuss a possible reassessment of cooperation in cases of viral co-infection, as cooperation may even be favored in situations where the prisoner’s dilemma applies.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the prisoner’s dilemma trap in Hamilton’s model of temporarily formed random groups\",\"authors\":\"José F. Fontanari , Mauro Santos\",\"doi\":\"10.1016/j.jtbi.2024.111946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Explaining the evolution of cooperation in the strong altruism scenario, where a cooperator does not benefit from her contribution to the public goods, is a challenging problem that requires positive assortment among cooperators (i.e., cooperators must tend to associate with other cooperators) or punishment of defectors. The need for these drastic measures stems from the analysis of a group selection model of temporarily formed random groups introduced by Hamilton nearly fifty years ago to describe the fate of altruistic behavior in a population. Challenging conventional wisdom, we show analytically here that strong altruism evolves in Hamilton’s original model in the case of biparental sexual reproduction. Moreover, when the cost of cooperation is small and the amplified contribution shared by group members is large, cooperation is the only stable strategy in equilibrium. Thus, our results provide a solution to the ‘problem of origination’ of strong altruism, i.e. how cooperation can take off from an initial low frequency of cooperators. We discuss a possible reassessment of cooperation in cases of viral co-infection, as cooperation may even be favored in situations where the prisoner’s dilemma applies.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002315\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solving the prisoner’s dilemma trap in Hamilton’s model of temporarily formed random groups
Explaining the evolution of cooperation in the strong altruism scenario, where a cooperator does not benefit from her contribution to the public goods, is a challenging problem that requires positive assortment among cooperators (i.e., cooperators must tend to associate with other cooperators) or punishment of defectors. The need for these drastic measures stems from the analysis of a group selection model of temporarily formed random groups introduced by Hamilton nearly fifty years ago to describe the fate of altruistic behavior in a population. Challenging conventional wisdom, we show analytically here that strong altruism evolves in Hamilton’s original model in the case of biparental sexual reproduction. Moreover, when the cost of cooperation is small and the amplified contribution shared by group members is large, cooperation is the only stable strategy in equilibrium. Thus, our results provide a solution to the ‘problem of origination’ of strong altruism, i.e. how cooperation can take off from an initial low frequency of cooperators. We discuss a possible reassessment of cooperation in cases of viral co-infection, as cooperation may even be favored in situations where the prisoner’s dilemma applies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.