B. Bayraktar, S. I. Butt, J. E. Nápoles, F. Rabossi
{"title":"积分不等式的一些新估计及其应用","authors":"B. Bayraktar, S. I. Butt, J. E. Nápoles, F. Rabossi","doi":"10.1007/s11253-024-02315-w","DOIUrl":null,"url":null,"abstract":"<p>We obtain several new integral inequalities in terms of fractional integral operators for the functions whose first derivatives satisfy either the conditions of the Lagrange theorem or the Lipschitz condition. In some special cases, the obtained results provide better upper estimates than the results known in the literature for the Bullen-type inequality and the Hadamard-type right-hand side inequality. Finally, some error estimates for the trapezoidal formula are discussed.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some New Estimates for Integral Inequalities and Their Applications\",\"authors\":\"B. Bayraktar, S. I. Butt, J. E. Nápoles, F. Rabossi\",\"doi\":\"10.1007/s11253-024-02315-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain several new integral inequalities in terms of fractional integral operators for the functions whose first derivatives satisfy either the conditions of the Lagrange theorem or the Lipschitz condition. In some special cases, the obtained results provide better upper estimates than the results known in the literature for the Bullen-type inequality and the Hadamard-type right-hand side inequality. Finally, some error estimates for the trapezoidal formula are discussed.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02315-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02315-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some New Estimates for Integral Inequalities and Their Applications
We obtain several new integral inequalities in terms of fractional integral operators for the functions whose first derivatives satisfy either the conditions of the Lagrange theorem or the Lipschitz condition. In some special cases, the obtained results provide better upper estimates than the results known in the literature for the Bullen-type inequality and the Hadamard-type right-hand side inequality. Finally, some error estimates for the trapezoidal formula are discussed.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.