基于 FFT 的辅助超材料代用建模,可实时预测有效弹性特性并快速进行逆向设计

Hooman Danesh, Daniele Di Lorenzo, Francisco Chinesta, Stefanie Reese, Tim Brepols
{"title":"基于 FFT 的辅助超材料代用建模,可实时预测有效弹性特性并快速进行逆向设计","authors":"Hooman Danesh, Daniele Di Lorenzo, Francisco Chinesta, Stefanie Reese, Tim Brepols","doi":"arxiv-2408.13532","DOIUrl":null,"url":null,"abstract":"Auxetic structures, known for their negative Poisson's ratio, exhibit\neffective elastic properties heavily influenced by their underlying structural\ngeometry and base material properties. While periodic homogenization of auxetic\nunit cells can be used to investigate these properties, it is computationally\nexpensive and limits design space exploration and inverse analysis. In this\npaper, surrogate models are developed for the real-time prediction of the\neffective elastic properties of auxetic unit cells with orthogonal voids of\ndifferent shapes. The unit cells feature orthogonal voids in four distinct\nshapes, including rectangular, diamond, oval, and peanut-shaped voids, each\ncharacterized by specific void diameters. The generated surrogate models accept\ngeometric parameters and the elastic properties of the base material as inputs\nto predict the effective elastic constants in real-time. This rapid evaluation\nenables a practical inverse analysis framework for obtaining the optimal design\nparameters that yield the desired effective response. The fast Fourier\ntransform (FFT)-based homogenization approach is adopted to efficiently\ngenerate data for developing the surrogate models, bypassing concerns about\nperiodic mesh generation and boundary conditions typically associated with the\nfinite element method (FEM). The performance of the generated surrogate models\nis rigorously examined through a train/test split methodology, a parametric\nstudy, and an inverse problem. Finally, a graphical user interface (GUI) is\ndeveloped, offering real-time prediction of the effective tangent stiffness and\nperforming inverse analysis to determine optimal geometric parameters.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design\",\"authors\":\"Hooman Danesh, Daniele Di Lorenzo, Francisco Chinesta, Stefanie Reese, Tim Brepols\",\"doi\":\"arxiv-2408.13532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auxetic structures, known for their negative Poisson's ratio, exhibit\\neffective elastic properties heavily influenced by their underlying structural\\ngeometry and base material properties. While periodic homogenization of auxetic\\nunit cells can be used to investigate these properties, it is computationally\\nexpensive and limits design space exploration and inverse analysis. In this\\npaper, surrogate models are developed for the real-time prediction of the\\neffective elastic properties of auxetic unit cells with orthogonal voids of\\ndifferent shapes. The unit cells feature orthogonal voids in four distinct\\nshapes, including rectangular, diamond, oval, and peanut-shaped voids, each\\ncharacterized by specific void diameters. The generated surrogate models accept\\ngeometric parameters and the elastic properties of the base material as inputs\\nto predict the effective elastic constants in real-time. This rapid evaluation\\nenables a practical inverse analysis framework for obtaining the optimal design\\nparameters that yield the desired effective response. The fast Fourier\\ntransform (FFT)-based homogenization approach is adopted to efficiently\\ngenerate data for developing the surrogate models, bypassing concerns about\\nperiodic mesh generation and boundary conditions typically associated with the\\nfinite element method (FEM). The performance of the generated surrogate models\\nis rigorously examined through a train/test split methodology, a parametric\\nstudy, and an inverse problem. Finally, a graphical user interface (GUI) is\\ndeveloped, offering real-time prediction of the effective tangent stiffness and\\nperforming inverse analysis to determine optimal geometric parameters.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

辅助结构以其负泊松比而闻名,其有效弹性特性在很大程度上受其基本结构几何和基础材料特性的影响。虽然辅助单元单元的周期均质化可用于研究这些特性,但其计算成本高,限制了设计空间探索和逆分析。本文开发了代用模型,用于实时预测具有不同形状正交空隙的辅助单元的有效弹性特性。这些单元格具有四种不同形状的正交空隙,包括矩形、菱形、椭圆形和花生形空隙,每种空隙都有特定的空隙直径。生成的代用模型接受几何参数和基础材料的弹性特性作为输入,以实时预测有效弹性常数。通过这种快速评估,可以建立实用的反分析框架,以获得能产生所需有效响应的最佳设计参数。采用基于快速傅里叶变换(FFT)的均质化方法来高效生成用于开发代用模型的数据,从而绕过了通常与有限元方法(FEM)相关的周期性网格生成和边界条件问题。通过训练/测试分离方法、参数研究和逆问题,对生成的代用模型的性能进行了严格检验。最后,开发了一个图形用户界面(GUI),提供有效切线刚度的实时预测,并进行反分析以确定最佳几何参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design
Auxetic structures, known for their negative Poisson's ratio, exhibit effective elastic properties heavily influenced by their underlying structural geometry and base material properties. While periodic homogenization of auxetic unit cells can be used to investigate these properties, it is computationally expensive and limits design space exploration and inverse analysis. In this paper, surrogate models are developed for the real-time prediction of the effective elastic properties of auxetic unit cells with orthogonal voids of different shapes. The unit cells feature orthogonal voids in four distinct shapes, including rectangular, diamond, oval, and peanut-shaped voids, each characterized by specific void diameters. The generated surrogate models accept geometric parameters and the elastic properties of the base material as inputs to predict the effective elastic constants in real-time. This rapid evaluation enables a practical inverse analysis framework for obtaining the optimal design parameters that yield the desired effective response. The fast Fourier transform (FFT)-based homogenization approach is adopted to efficiently generate data for developing the surrogate models, bypassing concerns about periodic mesh generation and boundary conditions typically associated with the finite element method (FEM). The performance of the generated surrogate models is rigorously examined through a train/test split methodology, a parametric study, and an inverse problem. Finally, a graphical user interface (GUI) is developed, offering real-time prediction of the effective tangent stiffness and performing inverse analysis to determine optimal geometric parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信