{"title":"稀疏图谱中的全动态最短路径","authors":"Adam Karczmarz, Piotr Sankowski","doi":"arxiv-2408.14406","DOIUrl":null,"url":null,"abstract":"We study the exact fully dynamic shortest paths problem. For real-weighted\ndirected graphs, we show a deterministic fully dynamic data structure with\n$\\tilde{O}(mn^{4/5})$ worst-case update time processing arbitrary\n$s,t$-distance queries in $\\tilde{O}(n^{4/5})$ time. This constitutes the first\nnon-trivial update/query tradeoff for this problem in the regime of sparse\nweighted directed graphs.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Dynamic Shortest Paths in Sparse Digraphs\",\"authors\":\"Adam Karczmarz, Piotr Sankowski\",\"doi\":\"arxiv-2408.14406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the exact fully dynamic shortest paths problem. For real-weighted\\ndirected graphs, we show a deterministic fully dynamic data structure with\\n$\\\\tilde{O}(mn^{4/5})$ worst-case update time processing arbitrary\\n$s,t$-distance queries in $\\\\tilde{O}(n^{4/5})$ time. This constitutes the first\\nnon-trivial update/query tradeoff for this problem in the regime of sparse\\nweighted directed graphs.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the exact fully dynamic shortest paths problem. For real-weighted
directed graphs, we show a deterministic fully dynamic data structure with
$\tilde{O}(mn^{4/5})$ worst-case update time processing arbitrary
$s,t$-distance queries in $\tilde{O}(n^{4/5})$ time. This constitutes the first
non-trivial update/query tradeoff for this problem in the regime of sparse
weighted directed graphs.