稀疏图谱中的全动态最短路径

Adam Karczmarz, Piotr Sankowski
{"title":"稀疏图谱中的全动态最短路径","authors":"Adam Karczmarz, Piotr Sankowski","doi":"arxiv-2408.14406","DOIUrl":null,"url":null,"abstract":"We study the exact fully dynamic shortest paths problem. For real-weighted\ndirected graphs, we show a deterministic fully dynamic data structure with\n$\\tilde{O}(mn^{4/5})$ worst-case update time processing arbitrary\n$s,t$-distance queries in $\\tilde{O}(n^{4/5})$ time. This constitutes the first\nnon-trivial update/query tradeoff for this problem in the regime of sparse\nweighted directed graphs.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Dynamic Shortest Paths in Sparse Digraphs\",\"authors\":\"Adam Karczmarz, Piotr Sankowski\",\"doi\":\"arxiv-2408.14406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the exact fully dynamic shortest paths problem. For real-weighted\\ndirected graphs, we show a deterministic fully dynamic data structure with\\n$\\\\tilde{O}(mn^{4/5})$ worst-case update time processing arbitrary\\n$s,t$-distance queries in $\\\\tilde{O}(n^{4/5})$ time. This constitutes the first\\nnon-trivial update/query tradeoff for this problem in the regime of sparse\\nweighted directed graphs.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了精确的全动态最短路径问题。对于实加权有向图,我们展示了一种确定性全动态数据结构,其最坏情况下的更新时间为$\tilde{O}(mn^{4/5})$,处理任意$s,t$距离查询的时间为$\tilde{O}(n^{4/5})$。这是在稀疏加权有向图体系中,该问题的首次非难更新/查询权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Dynamic Shortest Paths in Sparse Digraphs
We study the exact fully dynamic shortest paths problem. For real-weighted directed graphs, we show a deterministic fully dynamic data structure with $\tilde{O}(mn^{4/5})$ worst-case update time processing arbitrary $s,t$-distance queries in $\tilde{O}(n^{4/5})$ time. This constitutes the first non-trivial update/query tradeoff for this problem in the regime of sparse weighted directed graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信