{"title":"椭圆球面的小平-斯宾塞映射作为弗罗贝尼斯代数的同构物","authors":"Sangwook Lee","doi":"arxiv-2409.07814","DOIUrl":null,"url":null,"abstract":"Given a mirror pair of a symplectic manifold $X$ and a Landau-Ginzburg\npotential $W$, we are interested in the problem whether the quantum cohomology\nof $X$ and the Jacobian algebra of $W$ are isomorphic. Since those can be\nequipped with Frobenius algebra structures, we might ask whether they are\nisomorphic as Frobenius algebras. We show that the Kodaira-Spencer map gives a\nFrobenius algebra isomorphism for elliptic orbispheres, under the Floer\ntheoretic modification of the residue pairing.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kodaira-Spencer maps for elliptic orbispheres as isomorphisms of Frobenius algebras\",\"authors\":\"Sangwook Lee\",\"doi\":\"arxiv-2409.07814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a mirror pair of a symplectic manifold $X$ and a Landau-Ginzburg\\npotential $W$, we are interested in the problem whether the quantum cohomology\\nof $X$ and the Jacobian algebra of $W$ are isomorphic. Since those can be\\nequipped with Frobenius algebra structures, we might ask whether they are\\nisomorphic as Frobenius algebras. We show that the Kodaira-Spencer map gives a\\nFrobenius algebra isomorphism for elliptic orbispheres, under the Floer\\ntheoretic modification of the residue pairing.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kodaira-Spencer maps for elliptic orbispheres as isomorphisms of Frobenius algebras
Given a mirror pair of a symplectic manifold $X$ and a Landau-Ginzburg
potential $W$, we are interested in the problem whether the quantum cohomology
of $X$ and the Jacobian algebra of $W$ are isomorphic. Since those can be
equipped with Frobenius algebra structures, we might ask whether they are
isomorphic as Frobenius algebras. We show that the Kodaira-Spencer map gives a
Frobenius algebra isomorphism for elliptic orbispheres, under the Floer
theoretic modification of the residue pairing.