{"title":"利用长短期记忆三维重建神经网络(LSTM 3D-R2N2 )增强磨损颗粒图像效果","authors":"Yinhu Xi, Haohao Zhang, Bo Li","doi":"10.1177/09544062241271718","DOIUrl":null,"url":null,"abstract":"3D modeling of wear particles has proven to be a useful tool for monitoring mechanical failure conditions. In this work, a new method for 3D reconstruction of wear particles in uncontaminated oil (healthy oil) and contaminated oil (used oil) was proposed. The image acquisition device can capture multi-view images of moving wear particles in both healthy and used oil by using the reflected light. The images were pretreated first, and the image color inversion was conducted using the Pillow library. The pretreated wear particle images were used for 3D reconstruction using long short-term memory 3D recurrent reconstruction neural network. The current results were verified against existing results, and good agreement can be found. It can be concluded that we can reconstruct the similar 3D wear particle results with fewer images by comparison with other methods. Specifically, only 4–6 image samples were used for the 3D reconstruction of wear particles, and at least 8 image samples were needed for other existing reports.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear particles image enhancement using long short-term memory 3D recurrent reconstruction neural network (LSTM 3D-R2N2)\",\"authors\":\"Yinhu Xi, Haohao Zhang, Bo Li\",\"doi\":\"10.1177/09544062241271718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D modeling of wear particles has proven to be a useful tool for monitoring mechanical failure conditions. In this work, a new method for 3D reconstruction of wear particles in uncontaminated oil (healthy oil) and contaminated oil (used oil) was proposed. The image acquisition device can capture multi-view images of moving wear particles in both healthy and used oil by using the reflected light. The images were pretreated first, and the image color inversion was conducted using the Pillow library. The pretreated wear particle images were used for 3D reconstruction using long short-term memory 3D recurrent reconstruction neural network. The current results were verified against existing results, and good agreement can be found. It can be concluded that we can reconstruct the similar 3D wear particle results with fewer images by comparison with other methods. Specifically, only 4–6 image samples were used for the 3D reconstruction of wear particles, and at least 8 image samples were needed for other existing reports.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241271718\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241271718","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Wear particles image enhancement using long short-term memory 3D recurrent reconstruction neural network (LSTM 3D-R2N2)
3D modeling of wear particles has proven to be a useful tool for monitoring mechanical failure conditions. In this work, a new method for 3D reconstruction of wear particles in uncontaminated oil (healthy oil) and contaminated oil (used oil) was proposed. The image acquisition device can capture multi-view images of moving wear particles in both healthy and used oil by using the reflected light. The images were pretreated first, and the image color inversion was conducted using the Pillow library. The pretreated wear particle images were used for 3D reconstruction using long short-term memory 3D recurrent reconstruction neural network. The current results were verified against existing results, and good agreement can be found. It can be concluded that we can reconstruct the similar 3D wear particle results with fewer images by comparison with other methods. Specifically, only 4–6 image samples were used for the 3D reconstruction of wear particles, and at least 8 image samples were needed for other existing reports.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.