TopoMap++:更快、更节省空间的拓扑保证投影计算技术

Vitoria Guardieiro, Felipe Inagaki de Oliveira, Harish Doraiswamy, Luis Gustavo Nonato, Claudio Silva
{"title":"TopoMap++:更快、更节省空间的拓扑保证投影计算技术","authors":"Vitoria Guardieiro, Felipe Inagaki de Oliveira, Harish Doraiswamy, Luis Gustavo Nonato, Claudio Silva","doi":"arxiv-2409.07257","DOIUrl":null,"url":null,"abstract":"High-dimensional data, characterized by many features, can be difficult to\nvisualize effectively. Dimensionality reduction techniques, such as PCA, UMAP,\nand t-SNE, address this challenge by projecting the data into a\nlower-dimensional space while preserving important relationships. TopoMap is\nanother technique that excels at preserving the underlying structure of the\ndata, leading to interpretable visualizations. In particular, TopoMap maps the\nhigh-dimensional data into a visual space, guaranteeing that the 0-dimensional\npersistence diagram of the Rips filtration of the visual space matches the one\nfrom the high-dimensional data. However, the original TopoMap algorithm can be\nslow and its layout can be too sparse for large and complex datasets. In this\npaper, we propose three improvements to TopoMap: 1) a more space-efficient\nlayout, 2) a significantly faster implementation, and 3) a novel TreeMap-based\nrepresentation that makes use of the topological hierarchy to aid the\nexploration of the projections. These advancements make TopoMap, now referred\nto as TopoMap++, a more powerful tool for visualizing high-dimensional data\nwhich we demonstrate through different use case scenarios.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TopoMap++: A faster and more space efficient technique to compute projections with topological guarantees\",\"authors\":\"Vitoria Guardieiro, Felipe Inagaki de Oliveira, Harish Doraiswamy, Luis Gustavo Nonato, Claudio Silva\",\"doi\":\"arxiv-2409.07257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional data, characterized by many features, can be difficult to\\nvisualize effectively. Dimensionality reduction techniques, such as PCA, UMAP,\\nand t-SNE, address this challenge by projecting the data into a\\nlower-dimensional space while preserving important relationships. TopoMap is\\nanother technique that excels at preserving the underlying structure of the\\ndata, leading to interpretable visualizations. In particular, TopoMap maps the\\nhigh-dimensional data into a visual space, guaranteeing that the 0-dimensional\\npersistence diagram of the Rips filtration of the visual space matches the one\\nfrom the high-dimensional data. However, the original TopoMap algorithm can be\\nslow and its layout can be too sparse for large and complex datasets. In this\\npaper, we propose three improvements to TopoMap: 1) a more space-efficient\\nlayout, 2) a significantly faster implementation, and 3) a novel TreeMap-based\\nrepresentation that makes use of the topological hierarchy to aid the\\nexploration of the projections. These advancements make TopoMap, now referred\\nto as TopoMap++, a more powerful tool for visualizing high-dimensional data\\nwhich we demonstrate through different use case scenarios.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高维数据具有许多特征,很难有效地可视化。降维技术,如 PCA、UMAP 和 t-SNE,通过将数据投影到低维空间,同时保留重要关系来解决这一难题。TopoMap 是另一种擅长保留数据底层结构的技术,它能带来可解释的可视化效果。尤其是,TopoMap 将高维数据映射到可视空间,保证了可视空间的 Rips 滤波的 0 维存在图与高维数据的存在图相匹配。然而,原始的 TopoMap 算法在处理大型复杂数据集时可能会出现速度慢、布局过于稀疏的问题。在本文中,我们对 TopoMap 提出了三项改进建议:1)更具空间效率的布局;2)更快的实现速度;3)基于 TreeMap 的新颖表示法,利用拓扑层次来帮助探索投影。这些进步使 TopoMap(现称为 TopoMap++)成为可视化高维数据的更强大工具,我们将通过不同的使用场景来展示这些进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TopoMap++: A faster and more space efficient technique to compute projections with topological guarantees
High-dimensional data, characterized by many features, can be difficult to visualize effectively. Dimensionality reduction techniques, such as PCA, UMAP, and t-SNE, address this challenge by projecting the data into a lower-dimensional space while preserving important relationships. TopoMap is another technique that excels at preserving the underlying structure of the data, leading to interpretable visualizations. In particular, TopoMap maps the high-dimensional data into a visual space, guaranteeing that the 0-dimensional persistence diagram of the Rips filtration of the visual space matches the one from the high-dimensional data. However, the original TopoMap algorithm can be slow and its layout can be too sparse for large and complex datasets. In this paper, we propose three improvements to TopoMap: 1) a more space-efficient layout, 2) a significantly faster implementation, and 3) a novel TreeMap-based representation that makes use of the topological hierarchy to aid the exploration of the projections. These advancements make TopoMap, now referred to as TopoMap++, a more powerful tool for visualizing high-dimensional data which we demonstrate through different use case scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信