Lu Zhang, Zhe Dong, Fan Jiang, Huaju Huang, Hui Ding, Meimei Liu
{"title":"铁前列素-1通过抑制铁蛋白沉积改善顺式二氯二氨铂(II)诱导的卵巢毒性","authors":"Lu Zhang, Zhe Dong, Fan Jiang, Huaju Huang, Hui Ding, Meimei Liu","doi":"10.1186/s10020-024-00923-7","DOIUrl":null,"url":null,"abstract":"Cis-dichlorodiammineplatinum(II) (CDDP), while widely utilized in tumor therapy, results in toxic side effects that patients find intolerable. The specific mechanism by which CDDP inflicts ovarian damage remains unclear. This study aimed to explore the involvement of ferrostatin-1 (FER-1) and ferroptosis in CDDP-induced ovarian toxicity. This study established models of CDDP-induced injury in granulosa cells (GCs) and rat model of premature ovarian failure (POF). CCK-8 assessed the effects of CDDP and FER-1 on GC viability. FerroOrange and Mito-FerroGreen, DCFH-DA and MitoSox-Red, Rhodamine 123 and Transmission electron microscopy (TEM) measured Fe2+, reactive oxygen species (ROS), mitochondrial membrane potential and the mitochondrial morphology in GC cells, respectively. Serum hormone levels; organ indices; malondialdehyde, superoxide dismutase, and glutathione analyses; and western blotting were performed to examine ferroptosis's role in vitro. Molecular docking simulation was evaluated the interaction between FER-1 and GPX4 or FER-1 and NRF2. Molecular docking simulations were conducted to evaluate the interactions between FER-1 and GPX4, as well as FER-1 and NRF2. The findings revealed that CDDP-induced ovarian toxicity involved iron accumulation, increased ROS accumulation, and mitochondrial dysfunction, leading to endocrine disruption and tissue damage in rats. These changes correlated with NRF2, HO-1, and GPX4 levels. However, FER-1 decreased the extent of ferroptosis. Thus, ferroptosis appears to be a crucial mechanism of CDDP-induced ovarian injury, with GPX4 as potential protective targets.","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrostatin-1 ameliorates Cis-dichlorodiammineplatinum(II)-induced ovarian toxicity by inhibiting ferroptosis\",\"authors\":\"Lu Zhang, Zhe Dong, Fan Jiang, Huaju Huang, Hui Ding, Meimei Liu\",\"doi\":\"10.1186/s10020-024-00923-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cis-dichlorodiammineplatinum(II) (CDDP), while widely utilized in tumor therapy, results in toxic side effects that patients find intolerable. The specific mechanism by which CDDP inflicts ovarian damage remains unclear. This study aimed to explore the involvement of ferrostatin-1 (FER-1) and ferroptosis in CDDP-induced ovarian toxicity. This study established models of CDDP-induced injury in granulosa cells (GCs) and rat model of premature ovarian failure (POF). CCK-8 assessed the effects of CDDP and FER-1 on GC viability. FerroOrange and Mito-FerroGreen, DCFH-DA and MitoSox-Red, Rhodamine 123 and Transmission electron microscopy (TEM) measured Fe2+, reactive oxygen species (ROS), mitochondrial membrane potential and the mitochondrial morphology in GC cells, respectively. Serum hormone levels; organ indices; malondialdehyde, superoxide dismutase, and glutathione analyses; and western blotting were performed to examine ferroptosis's role in vitro. Molecular docking simulation was evaluated the interaction between FER-1 and GPX4 or FER-1 and NRF2. Molecular docking simulations were conducted to evaluate the interactions between FER-1 and GPX4, as well as FER-1 and NRF2. The findings revealed that CDDP-induced ovarian toxicity involved iron accumulation, increased ROS accumulation, and mitochondrial dysfunction, leading to endocrine disruption and tissue damage in rats. These changes correlated with NRF2, HO-1, and GPX4 levels. However, FER-1 decreased the extent of ferroptosis. Thus, ferroptosis appears to be a crucial mechanism of CDDP-induced ovarian injury, with GPX4 as potential protective targets.\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00923-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00923-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ferrostatin-1 ameliorates Cis-dichlorodiammineplatinum(II)-induced ovarian toxicity by inhibiting ferroptosis
Cis-dichlorodiammineplatinum(II) (CDDP), while widely utilized in tumor therapy, results in toxic side effects that patients find intolerable. The specific mechanism by which CDDP inflicts ovarian damage remains unclear. This study aimed to explore the involvement of ferrostatin-1 (FER-1) and ferroptosis in CDDP-induced ovarian toxicity. This study established models of CDDP-induced injury in granulosa cells (GCs) and rat model of premature ovarian failure (POF). CCK-8 assessed the effects of CDDP and FER-1 on GC viability. FerroOrange and Mito-FerroGreen, DCFH-DA and MitoSox-Red, Rhodamine 123 and Transmission electron microscopy (TEM) measured Fe2+, reactive oxygen species (ROS), mitochondrial membrane potential and the mitochondrial morphology in GC cells, respectively. Serum hormone levels; organ indices; malondialdehyde, superoxide dismutase, and glutathione analyses; and western blotting were performed to examine ferroptosis's role in vitro. Molecular docking simulation was evaluated the interaction between FER-1 and GPX4 or FER-1 and NRF2. Molecular docking simulations were conducted to evaluate the interactions between FER-1 and GPX4, as well as FER-1 and NRF2. The findings revealed that CDDP-induced ovarian toxicity involved iron accumulation, increased ROS accumulation, and mitochondrial dysfunction, leading to endocrine disruption and tissue damage in rats. These changes correlated with NRF2, HO-1, and GPX4 levels. However, FER-1 decreased the extent of ferroptosis. Thus, ferroptosis appears to be a crucial mechanism of CDDP-induced ovarian injury, with GPX4 as potential protective targets.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.