希尔伯特空间上由群的表示扩展的模型理论

Alexander Berenstein, Juan Manuel Pérez
{"title":"希尔伯特空间上由群的表示扩展的模型理论","authors":"Alexander Berenstein, Juan Manuel Pérez","doi":"arxiv-2409.03923","DOIUrl":null,"url":null,"abstract":"In this paper we study expansions of infinite dimensional Hilbert spaces with\na unitary representation of a group. When the group is finite, we prove the\ntheory of the corresponding expansion is $\\aleph_0$-categorical,\n$\\aleph_0$-stable and is SFB. On the other hand, when the group involved is a\nproduct of the form $H\\times \\mathbb{Z}^n$, where $H$ is a finite group and\n$n\\geq 1$, the theory of the Hilbert space expanded by the representation of\nthis group is, in general, stable not $\\aleph_0$-stable, not\n$\\aleph_0$-categorical, but it is $\\aleph_0$-categorical up to perturbations\nand $\\aleph_0$-stable up to perturbations.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model theory on Hilbert spaces expanded by a representation of a group\",\"authors\":\"Alexander Berenstein, Juan Manuel Pérez\",\"doi\":\"arxiv-2409.03923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study expansions of infinite dimensional Hilbert spaces with\\na unitary representation of a group. When the group is finite, we prove the\\ntheory of the corresponding expansion is $\\\\aleph_0$-categorical,\\n$\\\\aleph_0$-stable and is SFB. On the other hand, when the group involved is a\\nproduct of the form $H\\\\times \\\\mathbb{Z}^n$, where $H$ is a finite group and\\n$n\\\\geq 1$, the theory of the Hilbert space expanded by the representation of\\nthis group is, in general, stable not $\\\\aleph_0$-stable, not\\n$\\\\aleph_0$-categorical, but it is $\\\\aleph_0$-categorical up to perturbations\\nand $\\\\aleph_0$-stable up to perturbations.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了无限维希尔伯特空间与一个群的单元表示的展开。当群是有限的时候,我们证明了相应展开的理论是$\aleph_0$-分类的、$\aleph_0$-稳定的并且是 SFB 的。另一方面,当所涉及的群是$H\times \mathbb{Z}^n$形式的产物时,其中$H$是有限群且$n\geq 1$,由这个群的表示所展开的希尔伯特空间的理论是、在一般情况下,它是稳定的而不是$aleph_0$稳定的,不是$aleph_0$分类的,但它在扰动之前是$aleph_0$分类的,在扰动之前是$aleph_0$稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model theory on Hilbert spaces expanded by a representation of a group
In this paper we study expansions of infinite dimensional Hilbert spaces with a unitary representation of a group. When the group is finite, we prove the theory of the corresponding expansion is $\aleph_0$-categorical, $\aleph_0$-stable and is SFB. On the other hand, when the group involved is a product of the form $H\times \mathbb{Z}^n$, where $H$ is a finite group and $n\geq 1$, the theory of the Hilbert space expanded by the representation of this group is, in general, stable not $\aleph_0$-stable, not $\aleph_0$-categorical, but it is $\aleph_0$-categorical up to perturbations and $\aleph_0$-stable up to perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信