{"title":"希尔伯特空间上由群的表示扩展的模型理论","authors":"Alexander Berenstein, Juan Manuel Pérez","doi":"arxiv-2409.03923","DOIUrl":null,"url":null,"abstract":"In this paper we study expansions of infinite dimensional Hilbert spaces with\na unitary representation of a group. When the group is finite, we prove the\ntheory of the corresponding expansion is $\\aleph_0$-categorical,\n$\\aleph_0$-stable and is SFB. On the other hand, when the group involved is a\nproduct of the form $H\\times \\mathbb{Z}^n$, where $H$ is a finite group and\n$n\\geq 1$, the theory of the Hilbert space expanded by the representation of\nthis group is, in general, stable not $\\aleph_0$-stable, not\n$\\aleph_0$-categorical, but it is $\\aleph_0$-categorical up to perturbations\nand $\\aleph_0$-stable up to perturbations.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model theory on Hilbert spaces expanded by a representation of a group\",\"authors\":\"Alexander Berenstein, Juan Manuel Pérez\",\"doi\":\"arxiv-2409.03923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study expansions of infinite dimensional Hilbert spaces with\\na unitary representation of a group. When the group is finite, we prove the\\ntheory of the corresponding expansion is $\\\\aleph_0$-categorical,\\n$\\\\aleph_0$-stable and is SFB. On the other hand, when the group involved is a\\nproduct of the form $H\\\\times \\\\mathbb{Z}^n$, where $H$ is a finite group and\\n$n\\\\geq 1$, the theory of the Hilbert space expanded by the representation of\\nthis group is, in general, stable not $\\\\aleph_0$-stable, not\\n$\\\\aleph_0$-categorical, but it is $\\\\aleph_0$-categorical up to perturbations\\nand $\\\\aleph_0$-stable up to perturbations.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model theory on Hilbert spaces expanded by a representation of a group
In this paper we study expansions of infinite dimensional Hilbert spaces with
a unitary representation of a group. When the group is finite, we prove the
theory of the corresponding expansion is $\aleph_0$-categorical,
$\aleph_0$-stable and is SFB. On the other hand, when the group involved is a
product of the form $H\times \mathbb{Z}^n$, where $H$ is a finite group and
$n\geq 1$, the theory of the Hilbert space expanded by the representation of
this group is, in general, stable not $\aleph_0$-stable, not
$\aleph_0$-categorical, but it is $\aleph_0$-categorical up to perturbations
and $\aleph_0$-stable up to perturbations.