{"title":"关于 $A_p$ 条件的非标准表征","authors":"Andrei K. Lerner","doi":"arxiv-2409.07781","DOIUrl":null,"url":null,"abstract":"The classical Muckenhoupt's $A_p$ condition is necessary and sufficient for\nthe boundedness of the maximal operator $M$ on $L^p(w)$ spaces. In this paper\nwe obtain another characterization of the $A_p$ condition. As a result, we show\nthat some strong versions of the weighted $L^p(w)$ Coifman--Fefferman and\nFefferman--Stein inequalities hold if and only if $w\\in A_p$. We also give new\nexamples of Banach function spaces $X$ such that $M$ is bounded on $X$ but not\nbounded on the associate space $X'$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a non-standard characterization of the $A_p$ condition\",\"authors\":\"Andrei K. Lerner\",\"doi\":\"arxiv-2409.07781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Muckenhoupt's $A_p$ condition is necessary and sufficient for\\nthe boundedness of the maximal operator $M$ on $L^p(w)$ spaces. In this paper\\nwe obtain another characterization of the $A_p$ condition. As a result, we show\\nthat some strong versions of the weighted $L^p(w)$ Coifman--Fefferman and\\nFefferman--Stein inequalities hold if and only if $w\\\\in A_p$. We also give new\\nexamples of Banach function spaces $X$ such that $M$ is bounded on $X$ but not\\nbounded on the associate space $X'$.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a non-standard characterization of the $A_p$ condition
The classical Muckenhoupt's $A_p$ condition is necessary and sufficient for
the boundedness of the maximal operator $M$ on $L^p(w)$ spaces. In this paper
we obtain another characterization of the $A_p$ condition. As a result, we show
that some strong versions of the weighted $L^p(w)$ Coifman--Fefferman and
Fefferman--Stein inequalities hold if and only if $w\in A_p$. We also give new
examples of Banach function spaces $X$ such that $M$ is bounded on $X$ but not
bounded on the associate space $X'$.