关于 $A_p$ 条件的非标准表征

Andrei K. Lerner
{"title":"关于 $A_p$ 条件的非标准表征","authors":"Andrei K. Lerner","doi":"arxiv-2409.07781","DOIUrl":null,"url":null,"abstract":"The classical Muckenhoupt's $A_p$ condition is necessary and sufficient for\nthe boundedness of the maximal operator $M$ on $L^p(w)$ spaces. In this paper\nwe obtain another characterization of the $A_p$ condition. As a result, we show\nthat some strong versions of the weighted $L^p(w)$ Coifman--Fefferman and\nFefferman--Stein inequalities hold if and only if $w\\in A_p$. We also give new\nexamples of Banach function spaces $X$ such that $M$ is bounded on $X$ but not\nbounded on the associate space $X'$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a non-standard characterization of the $A_p$ condition\",\"authors\":\"Andrei K. Lerner\",\"doi\":\"arxiv-2409.07781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Muckenhoupt's $A_p$ condition is necessary and sufficient for\\nthe boundedness of the maximal operator $M$ on $L^p(w)$ spaces. In this paper\\nwe obtain another characterization of the $A_p$ condition. As a result, we show\\nthat some strong versions of the weighted $L^p(w)$ Coifman--Fefferman and\\nFefferman--Stein inequalities hold if and only if $w\\\\in A_p$. We also give new\\nexamples of Banach function spaces $X$ such that $M$ is bounded on $X$ but not\\nbounded on the associate space $X'$.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典的穆肯霍普特 $A_p$ 条件是最大算子 $M$ 在 $L^p(w)$ 空间上有界的必要条件和充分条件。在本文中,我们得到了 $A_p$ 条件的另一个特征。因此,我们证明了当且仅当 $w\in A_p$ 时,加权 $L^p(w)$ Coifman--Fefferman 和 Fefferman--Stein 不等式的某些强版本成立。我们还给出了巴拿赫函数空间 $X$ 的新例子,使得 $M$ 在 $X$ 上有界,但在关联空间 $X'$ 上无界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a non-standard characterization of the $A_p$ condition
The classical Muckenhoupt's $A_p$ condition is necessary and sufficient for the boundedness of the maximal operator $M$ on $L^p(w)$ spaces. In this paper we obtain another characterization of the $A_p$ condition. As a result, we show that some strong versions of the weighted $L^p(w)$ Coifman--Fefferman and Fefferman--Stein inequalities hold if and only if $w\in A_p$. We also give new examples of Banach function spaces $X$ such that $M$ is bounded on $X$ but not bounded on the associate space $X'$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信