基于强化学习的多无人机优化控制,用于续航时间有限的通信服务

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lu Dong;Pinle Ding;Xin Yuan;Andi Xu;Jie Gui
{"title":"基于强化学习的多无人机优化控制,用于续航时间有限的通信服务","authors":"Lu Dong;Pinle Ding;Xin Yuan;Andi Xu;Jie Gui","doi":"10.1109/TCDS.2024.3441865","DOIUrl":null,"url":null,"abstract":"This article investigates the service path problem of multi-unmanned aerial vehicle (multi-UAV) providing communication services to multiuser in urban environments with limited endurance. Our goal is to learn an optimal multi-UAV centralized control policy that will enable UAVs to find the illumination areas in urban environments through curiosity-driven exploration and harvest energy to continue providing communication services to users. First, we propose a reinforcement learning (RL)-based multi-UAV centralized control strategy to maximize the accumulated communication service score. In the proposed framework, curiosity can act as an internal incentive signal, allowing UAVs to explore the environment without any prior knowledge. Second, a two-phase exploring protocol is proposed for practical implementation. Compared to the baseline method, our proposed method can achieve a significantly higher accumulated communication service score in the exploitation-intensive phase. The results demonstrate that the proposed method can obtain accurate service paths over the baseline method and handle the exploration-exploitation tradeoff well.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 1","pages":"219-231"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement-Learning-Based Multi-Unmanned Aerial Vehicle Optimal Control for Communication Services With Limited Endurance\",\"authors\":\"Lu Dong;Pinle Ding;Xin Yuan;Andi Xu;Jie Gui\",\"doi\":\"10.1109/TCDS.2024.3441865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the service path problem of multi-unmanned aerial vehicle (multi-UAV) providing communication services to multiuser in urban environments with limited endurance. Our goal is to learn an optimal multi-UAV centralized control policy that will enable UAVs to find the illumination areas in urban environments through curiosity-driven exploration and harvest energy to continue providing communication services to users. First, we propose a reinforcement learning (RL)-based multi-UAV centralized control strategy to maximize the accumulated communication service score. In the proposed framework, curiosity can act as an internal incentive signal, allowing UAVs to explore the environment without any prior knowledge. Second, a two-phase exploring protocol is proposed for practical implementation. Compared to the baseline method, our proposed method can achieve a significantly higher accumulated communication service score in the exploitation-intensive phase. The results demonstrate that the proposed method can obtain accurate service paths over the baseline method and handle the exploration-exploitation tradeoff well.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"17 1\",\"pages\":\"219-231\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633905/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633905/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement-Learning-Based Multi-Unmanned Aerial Vehicle Optimal Control for Communication Services With Limited Endurance
This article investigates the service path problem of multi-unmanned aerial vehicle (multi-UAV) providing communication services to multiuser in urban environments with limited endurance. Our goal is to learn an optimal multi-UAV centralized control policy that will enable UAVs to find the illumination areas in urban environments through curiosity-driven exploration and harvest energy to continue providing communication services to users. First, we propose a reinforcement learning (RL)-based multi-UAV centralized control strategy to maximize the accumulated communication service score. In the proposed framework, curiosity can act as an internal incentive signal, allowing UAVs to explore the environment without any prior knowledge. Second, a two-phase exploring protocol is proposed for practical implementation. Compared to the baseline method, our proposed method can achieve a significantly higher accumulated communication service score in the exploitation-intensive phase. The results demonstrate that the proposed method can obtain accurate service paths over the baseline method and handle the exploration-exploitation tradeoff well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
10.00%
发文量
170
期刊介绍: The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信