DBSR:用于心脏磁共振成像盲超分辨率的二次条件扩散模型

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Defu Qiu;Yuhu Cheng;Kelvin K.L. Wong;Wenjun Zhang;Zhang Yi;Xuesong Wang
{"title":"DBSR:用于心脏磁共振成像盲超分辨率的二次条件扩散模型","authors":"Defu Qiu;Yuhu Cheng;Kelvin K.L. Wong;Wenjun Zhang;Zhang Yi;Xuesong Wang","doi":"10.1109/TMM.2024.3453059","DOIUrl":null,"url":null,"abstract":"Cardiac magnetic resonance imaging (CMRI) can help experts quickly diagnose cardiovascular diseases. Due to the patient's breathing and slight movement during the magnetic resonance imaging scan, the obtained CMRI may be severely blurred, affecting the accuracy of clinical diagnosis. To address this issue, we propose the quadratic conditional diffusion model for blind CMRI super-resolution (DBSR). Specifically, we propose a conditional blur kernel noise predictor, which predicts the blur kernel from low-resolution images by the diffusion model, transforming the unknown blur kernel in low-resolution CMRI into a known one. Meanwhile, we design a novel conditional CMRI noise predictor, which uses the predicted blur kernel as prior knowledge to guide the diffusion model in reconstructing high-resolution CMRI. Furthermore, we propose a cascaded residual attention network feature extractor, which extracts feature information from CMRI low-resolution images for blur kernel prediction and SR reconstruction of CMRI images. Extensive experimental results indicate that our proposed DBSR achieves better blind super-resolution reconstruction results than several state-of-the-art baselines.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11358-11371"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DBSR: Quadratic Conditional Diffusion Model for Blind Cardiac MRI Super-Resolution\",\"authors\":\"Defu Qiu;Yuhu Cheng;Kelvin K.L. Wong;Wenjun Zhang;Zhang Yi;Xuesong Wang\",\"doi\":\"10.1109/TMM.2024.3453059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac magnetic resonance imaging (CMRI) can help experts quickly diagnose cardiovascular diseases. Due to the patient's breathing and slight movement during the magnetic resonance imaging scan, the obtained CMRI may be severely blurred, affecting the accuracy of clinical diagnosis. To address this issue, we propose the quadratic conditional diffusion model for blind CMRI super-resolution (DBSR). Specifically, we propose a conditional blur kernel noise predictor, which predicts the blur kernel from low-resolution images by the diffusion model, transforming the unknown blur kernel in low-resolution CMRI into a known one. Meanwhile, we design a novel conditional CMRI noise predictor, which uses the predicted blur kernel as prior knowledge to guide the diffusion model in reconstructing high-resolution CMRI. Furthermore, we propose a cascaded residual attention network feature extractor, which extracts feature information from CMRI low-resolution images for blur kernel prediction and SR reconstruction of CMRI images. Extensive experimental results indicate that our proposed DBSR achieves better blind super-resolution reconstruction results than several state-of-the-art baselines.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"11358-11371\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663065/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663065/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心脏磁共振成像(CMRI)可以帮助专家快速诊断心血管疾病。在磁共振成像扫描过程中,由于患者的呼吸和轻微移动,获得的 CMRI 可能会严重模糊,影响临床诊断的准确性。针对这一问题,我们提出了用于盲 CMRI 超分辨率(DBSR)的二次条件扩散模型。具体来说,我们提出了条件模糊核噪声预测器,通过扩散模型从低分辨率图像中预测模糊核,将低分辨率 CMRI 中的未知模糊核转化为已知模糊核。同时,我们设计了一种新型的条件 CMRI 噪声预测器,将预测的模糊核作为先验知识,指导扩散模型重建高分辨率 CMRI。此外,我们还提出了一种级联残差注意网络特征提取器,它能从 CMRI 低分辨率图像中提取特征信息,用于模糊核预测和 CMRI 图像的 SR 重建。广泛的实验结果表明,我们提出的 DBSR 比几种最先进的基线方法取得了更好的盲超解像重建效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DBSR: Quadratic Conditional Diffusion Model for Blind Cardiac MRI Super-Resolution
Cardiac magnetic resonance imaging (CMRI) can help experts quickly diagnose cardiovascular diseases. Due to the patient's breathing and slight movement during the magnetic resonance imaging scan, the obtained CMRI may be severely blurred, affecting the accuracy of clinical diagnosis. To address this issue, we propose the quadratic conditional diffusion model for blind CMRI super-resolution (DBSR). Specifically, we propose a conditional blur kernel noise predictor, which predicts the blur kernel from low-resolution images by the diffusion model, transforming the unknown blur kernel in low-resolution CMRI into a known one. Meanwhile, we design a novel conditional CMRI noise predictor, which uses the predicted blur kernel as prior knowledge to guide the diffusion model in reconstructing high-resolution CMRI. Furthermore, we propose a cascaded residual attention network feature extractor, which extracts feature information from CMRI low-resolution images for blur kernel prediction and SR reconstruction of CMRI images. Extensive experimental results indicate that our proposed DBSR achieves better blind super-resolution reconstruction results than several state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信