巨型项目建筑设计的集体决策模式

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Huijun Tu, Shitao Jin
{"title":"巨型项目建筑设计的集体决策模式","authors":"Huijun Tu, Shitao Jin","doi":"10.1108/ecam-03-2024-0394","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Due to the complexity and diversity of megaprojects, the architectural programming process often involves multiple stakeholders, making decision-making difficult and susceptible to subjective factors. This study aims to propose an architectural programming methodology system (APMS) for megaprojects based on group decision-making model to enhance the accuracy and transparency of decision-making, and to facilitate participation and integration among stakeholders. This method allows multiple interest groups to participate in decision-making, gathers various perspectives and opinions, thereby improving the quality and efficiency of architectural programming and promoting the smooth implementation of projects.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study first clarifies the decision-making subjects, decision objects, and decision methods of APMS based on group decision-making theory and value-based architectural programming methods. Furthermore, the entropy weight method and fuzzy TOPSIS method are employed as calculation methods to comprehensively evaluate decision alternatives and derive optimal decision conclusions. The workflow of APMS consists of four stages: preparation, information, decision, and evaluation, ensuring the scientific and systematic of the decision-making process.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>This study conducted field research and empirical analysis on a practical megaproject of a comprehensive transport hub to verify the effectiveness of APMS. The results show that, in terms of both short-distance and long-distance transportation modes, the decision-making results of APMS are largely consistent with the preliminary programming outcomes of the project. However, regarding transfer modes, the APMS decision-making results revealed certain discrepancies between the project's current status and the preliminary programming.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>APMS addresses the shortcomings in decision accuracy and stakeholder participation and integration in the current field of architectural programming. It not only enhances stakeholder participation and interaction but also considers various opinions and interests comprehensively. Additionally, APMS has significant potential in optimizing project performance, accelerating project processes, and reducing resource waste.</p><!--/ Abstract__block -->","PeriodicalId":11888,"journal":{"name":"Engineering, Construction and Architectural Management","volume":"7 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A group decision-making model for architectural programming in megaprojects\",\"authors\":\"Huijun Tu, Shitao Jin\",\"doi\":\"10.1108/ecam-03-2024-0394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Due to the complexity and diversity of megaprojects, the architectural programming process often involves multiple stakeholders, making decision-making difficult and susceptible to subjective factors. This study aims to propose an architectural programming methodology system (APMS) for megaprojects based on group decision-making model to enhance the accuracy and transparency of decision-making, and to facilitate participation and integration among stakeholders. This method allows multiple interest groups to participate in decision-making, gathers various perspectives and opinions, thereby improving the quality and efficiency of architectural programming and promoting the smooth implementation of projects.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This study first clarifies the decision-making subjects, decision objects, and decision methods of APMS based on group decision-making theory and value-based architectural programming methods. Furthermore, the entropy weight method and fuzzy TOPSIS method are employed as calculation methods to comprehensively evaluate decision alternatives and derive optimal decision conclusions. The workflow of APMS consists of four stages: preparation, information, decision, and evaluation, ensuring the scientific and systematic of the decision-making process.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>This study conducted field research and empirical analysis on a practical megaproject of a comprehensive transport hub to verify the effectiveness of APMS. The results show that, in terms of both short-distance and long-distance transportation modes, the decision-making results of APMS are largely consistent with the preliminary programming outcomes of the project. However, regarding transfer modes, the APMS decision-making results revealed certain discrepancies between the project's current status and the preliminary programming.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>APMS addresses the shortcomings in decision accuracy and stakeholder participation and integration in the current field of architectural programming. It not only enhances stakeholder participation and interaction but also considers various opinions and interests comprehensively. Additionally, APMS has significant potential in optimizing project performance, accelerating project processes, and reducing resource waste.</p><!--/ Abstract__block -->\",\"PeriodicalId\":11888,\"journal\":{\"name\":\"Engineering, Construction and Architectural Management\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Construction and Architectural Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ecam-03-2024-0394\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Construction and Architectural Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ecam-03-2024-0394","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

目的由于超大型项目的复杂性和多样性,建筑方案编制过程往往涉及多个利益相关方,决策难度大且易受主观因素影响。本研究旨在提出一种基于群体决策模型的特大项目建筑方案编制方法系统(APMS),以提高决策的准确性和透明度,促进利益相关者之间的参与和融合。本研究首先基于群体决策理论和基于价值的建筑方案编制方法,明确了 APMS 的决策主体、决策客体和决策方法。此外,还采用熵权法和模糊 TOPSIS 法作为计算方法,对备选决策方案进行综合评价,得出最优决策结论。APMS 的工作流程包括准备、信息、决策和评价四个阶段,确保了决策过程的科学性和系统性。研究结果本研究通过对某综合交通枢纽特大项目的实地调研和实证分析,验证了 APMS 的有效性。结果表明,在短途和长途运输模式方面,APMS 的决策结果与项目的初步规划结果基本一致。原创性/价值APMS 解决了当前建筑规划领域在决策准确性、利益相关者参与和整合方面的不足。它不仅加强了利益相关者的参与和互动,还全面考虑了各种意见和利益。此外,APMS 在优化项目绩效、加快项目进程和减少资源浪费方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A group decision-making model for architectural programming in megaprojects

Purpose

Due to the complexity and diversity of megaprojects, the architectural programming process often involves multiple stakeholders, making decision-making difficult and susceptible to subjective factors. This study aims to propose an architectural programming methodology system (APMS) for megaprojects based on group decision-making model to enhance the accuracy and transparency of decision-making, and to facilitate participation and integration among stakeholders. This method allows multiple interest groups to participate in decision-making, gathers various perspectives and opinions, thereby improving the quality and efficiency of architectural programming and promoting the smooth implementation of projects.

Design/methodology/approach

This study first clarifies the decision-making subjects, decision objects, and decision methods of APMS based on group decision-making theory and value-based architectural programming methods. Furthermore, the entropy weight method and fuzzy TOPSIS method are employed as calculation methods to comprehensively evaluate decision alternatives and derive optimal decision conclusions. The workflow of APMS consists of four stages: preparation, information, decision, and evaluation, ensuring the scientific and systematic of the decision-making process.

Findings

This study conducted field research and empirical analysis on a practical megaproject of a comprehensive transport hub to verify the effectiveness of APMS. The results show that, in terms of both short-distance and long-distance transportation modes, the decision-making results of APMS are largely consistent with the preliminary programming outcomes of the project. However, regarding transfer modes, the APMS decision-making results revealed certain discrepancies between the project's current status and the preliminary programming.

Originality/value

APMS addresses the shortcomings in decision accuracy and stakeholder participation and integration in the current field of architectural programming. It not only enhances stakeholder participation and interaction but also considers various opinions and interests comprehensively. Additionally, APMS has significant potential in optimizing project performance, accelerating project processes, and reducing resource waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering, Construction and Architectural Management
Engineering, Construction and Architectural Management Business, Management and Accounting-General Business,Management and Accounting
CiteScore
8.10
自引率
19.50%
发文量
226
期刊介绍: ECAM publishes original peer-reviewed research papers, case studies, technical notes, book reviews, features, discussions and other contemporary articles that advance research and practice in engineering, construction and architectural management. In particular, ECAM seeks to advance integrated design and construction practices, project lifecycle management, and sustainable construction. The journal’s scope covers all aspects of architectural design, design management, construction/project management, engineering management of major infrastructure projects, and the operation and management of constructed facilities. ECAM also addresses the technological, process, economic/business, environmental/sustainability, political, and social/human developments that influence the construction project delivery process. ECAM strives to establish strong theoretical and empirical debates in the above areas of engineering, architecture, and construction research. Papers should be heavily integrated with the existing and current body of knowledge within the field and develop explicit and novel contributions. Acknowledging the global character of the field, we welcome papers on regional studies but encourage authors to position the work within the broader international context by reviewing and comparing findings from their regional study with studies conducted in other regions or countries whenever possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信