哈密顿流和完美流体中的扭曲

IF 2.6 1区 数学 Q1 MATHEMATICS
Theodore D. Drivas, Tarek M. Elgindi, In-Jee Jeong
{"title":"哈密顿流和完美流体中的扭曲","authors":"Theodore D. Drivas, Tarek M. Elgindi, In-Jee Jeong","doi":"10.1007/s00222-024-01285-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of stability for non-autonomous Hamiltonian flows on two-dimensional annular surfaces. This notion of stability is designed to capture the sustained twisting of particle trajectories. The main Theorem is applied to establish a number of results that reveal a form of irreversibility in the Euler equations governing the motion of an incompressible and inviscid fluid. In particular, we show that nearby general stable steady states (i) all fluid flows exhibit indefinite twisting (ii) vorticity generically exhibits gradient growth and wandering. We also give examples of infinite time gradient growth for smooth solutions to the SQG equation and of smooth vortex patches that entangle and develop unbounded perimeter in infinite time.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisting in Hamiltonian flows and perfect fluids\",\"authors\":\"Theodore D. Drivas, Tarek M. Elgindi, In-Jee Jeong\",\"doi\":\"10.1007/s00222-024-01285-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of stability for non-autonomous Hamiltonian flows on two-dimensional annular surfaces. This notion of stability is designed to capture the sustained twisting of particle trajectories. The main Theorem is applied to establish a number of results that reveal a form of irreversibility in the Euler equations governing the motion of an incompressible and inviscid fluid. In particular, we show that nearby general stable steady states (i) all fluid flows exhibit indefinite twisting (ii) vorticity generically exhibits gradient growth and wandering. We also give examples of infinite time gradient growth for smooth solutions to the SQG equation and of smooth vortex patches that entangle and develop unbounded perimeter in infinite time.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01285-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01285-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为二维环形表面上的非自治哈密顿流引入了一个稳定性概念。这一稳定性概念旨在捕捉粒子轨迹的持续扭曲。我们应用主定理建立了一系列结果,揭示了支配不可压缩不粘性流体运动的欧拉方程中的一种不可逆形式。特别是,我们证明了在一般稳定稳态附近 (i) 所有流体流动都表现出不确定的扭曲 (ii) 涡度一般表现出梯度增长和徘徊。我们还举例说明了 SQG 方程平滑解的无限时间梯度增长,以及平滑涡斑在无限时间内纠缠并形成无限制周长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Twisting in Hamiltonian flows and perfect fluids

Twisting in Hamiltonian flows and perfect fluids

We introduce a notion of stability for non-autonomous Hamiltonian flows on two-dimensional annular surfaces. This notion of stability is designed to capture the sustained twisting of particle trajectories. The main Theorem is applied to establish a number of results that reveal a form of irreversibility in the Euler equations governing the motion of an incompressible and inviscid fluid. In particular, we show that nearby general stable steady states (i) all fluid flows exhibit indefinite twisting (ii) vorticity generically exhibits gradient growth and wandering. We also give examples of infinite time gradient growth for smooth solutions to the SQG equation and of smooth vortex patches that entangle and develop unbounded perimeter in infinite time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信