BLens:利用集合嵌入对二进制函数进行对比式字幕制作

Tristan Benoit, Yunru Wang, Moritz Dannehl, Johannes Kinder
{"title":"BLens:利用集合嵌入对二进制函数进行对比式字幕制作","authors":"Tristan Benoit, Yunru Wang, Moritz Dannehl, Johannes Kinder","doi":"arxiv-2409.07889","DOIUrl":null,"url":null,"abstract":"Function names can greatly aid human reverse engineers, which has spurred\ndevelopment of machine learning-based approaches to predicting function names\nin stripped binaries. Much current work in this area now uses transformers,\napplying a metaphor of machine translation from code to function names. Still,\nfunction naming models face challenges in generalizing to projects completely\nunrelated to the training set. In this paper, we take a completely new approach\nby transferring advances in automated image captioning to the domain of binary\nreverse engineering, such that different parts of a binary function can be\nassociated with parts of its name. We propose BLens, which combines multiple\nbinary function embeddings into a new ensemble representation, aligns it with\nthe name representation latent space via a contrastive learning approach, and\ngenerates function names with a transformer architecture tailored for function\nnames. In our experiments, we demonstrate that BLens significantly outperforms\nthe state of the art. In the usual setting of splitting per binary, we achieve\nan $F_1$ score of 0.77 compared to 0.67. Moreover, in the cross-project\nsetting, which emphasizes generalizability, we achieve an $F_1$ score of 0.46\ncompared to 0.29.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLens: Contrastive Captioning of Binary Functions using Ensemble Embedding\",\"authors\":\"Tristan Benoit, Yunru Wang, Moritz Dannehl, Johannes Kinder\",\"doi\":\"arxiv-2409.07889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function names can greatly aid human reverse engineers, which has spurred\\ndevelopment of machine learning-based approaches to predicting function names\\nin stripped binaries. Much current work in this area now uses transformers,\\napplying a metaphor of machine translation from code to function names. Still,\\nfunction naming models face challenges in generalizing to projects completely\\nunrelated to the training set. In this paper, we take a completely new approach\\nby transferring advances in automated image captioning to the domain of binary\\nreverse engineering, such that different parts of a binary function can be\\nassociated with parts of its name. We propose BLens, which combines multiple\\nbinary function embeddings into a new ensemble representation, aligns it with\\nthe name representation latent space via a contrastive learning approach, and\\ngenerates function names with a transformer architecture tailored for function\\nnames. In our experiments, we demonstrate that BLens significantly outperforms\\nthe state of the art. In the usual setting of splitting per binary, we achieve\\nan $F_1$ score of 0.77 compared to 0.67. Moreover, in the cross-project\\nsetting, which emphasizes generalizability, we achieve an $F_1$ score of 0.46\\ncompared to 0.29.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

函数名可以极大地帮助人类逆向工程师,这也刺激了基于机器学习的方法的发展,以预测剥离二进制文件中的函数名。目前,该领域的许多工作都使用了转换器,应用了从代码到函数名的机器翻译隐喻。不过,函数命名模型在推广到与训练集完全无关的项目时仍然面临挑战。在本文中,我们采用了一种全新的方法,将自动图像字幕技术的进步应用到二进制逆向工程领域,从而将二进制函数的不同部分与其名称的不同部分联系起来。我们提出了 BLens,它将多个二进制函数嵌入结合到一个新的集合表示中,通过对比学习方法将其与名称表示的潜在空间对齐,并通过专为函数名称定制的转换器架构生成函数名称。我们在实验中证明,BLens 的性能明显优于现有技术。在按二进制拆分的常规设置中,我们的 $F_1$ 得分为 0.77,而后者为 0.67。此外,在强调通用性的跨项目设置中,我们的 $F_1$ 得分为 0.46,而之前的得分为 0.29。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BLens: Contrastive Captioning of Binary Functions using Ensemble Embedding
Function names can greatly aid human reverse engineers, which has spurred development of machine learning-based approaches to predicting function names in stripped binaries. Much current work in this area now uses transformers, applying a metaphor of machine translation from code to function names. Still, function naming models face challenges in generalizing to projects completely unrelated to the training set. In this paper, we take a completely new approach by transferring advances in automated image captioning to the domain of binary reverse engineering, such that different parts of a binary function can be associated with parts of its name. We propose BLens, which combines multiple binary function embeddings into a new ensemble representation, aligns it with the name representation latent space via a contrastive learning approach, and generates function names with a transformer architecture tailored for function names. In our experiments, we demonstrate that BLens significantly outperforms the state of the art. In the usual setting of splitting per binary, we achieve an $F_1$ score of 0.77 compared to 0.67. Moreover, in the cross-project setting, which emphasizes generalizability, we achieve an $F_1$ score of 0.46 compared to 0.29.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信