公因子平均维度和豪斯多夫平均维度的变化

IF 1.9 3区 数学 Q1 MATHEMATICS
J. Muentes, A. J. Becker, A. T. Baraviera, É. Scopel
{"title":"公因子平均维度和豪斯多夫平均维度的变化","authors":"J. Muentes, A. J. Becker, A. T. Baraviera, É. Scopel","doi":"10.1007/s12346-024-01100-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(f:\\mathbb {M}\\rightarrow \\mathbb {M}\\)</span> be a continuous map on a compact metric space <span>\\(\\mathbb {M}\\)</span> equipped with a fixed metric <i>d</i>, and let <span>\\(\\tau \\)</span> be the topology on <span>\\(\\mathbb {M}\\)</span> induced by <i>d</i>. We denote by <span>\\(\\mathbb {M}(\\tau )\\)</span> the set consisting of all metrics on <span>\\(\\mathbb {M}\\)</span> that are equivalent to <i>d</i>. Let <span>\\( \\text {mdim}_{\\text {M}}(\\mathbb {M},d, f)\\)</span> and <span>\\( \\text {mdim}_{\\text {H}} (\\mathbb {M},d, f)\\)</span> be, respectively, the metric mean dimension and mean Hausdorff dimension of <i>f</i>. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that <span>\\( \\text {mdim}_{\\text {M}}(\\mathbb {M},d, f)\\)</span> and <span>\\( \\text {mdim}_{\\text {H}} (\\mathbb {M},d, f)\\)</span> depend on the metric <i>d</i> chosen for <span>\\(\\mathbb {M}\\)</span>. In this work, we will prove that, for a fixed dynamical system <span>\\(f:\\mathbb {M}\\rightarrow \\mathbb {M}\\)</span>, the functions <span>\\(\\text {mdim}_{\\text {M}} (\\mathbb {M}, f):\\mathbb {M}(\\tau )\\rightarrow \\mathbb {R}\\cup \\{\\infty \\}\\)</span> and <span>\\( \\text {mdim}_{\\text {H}}(\\mathbb {M}, f): \\mathbb {M}(\\tau )\\rightarrow \\mathbb {R}\\cup \\{\\infty \\}\\)</span> are not continuous, where <span>\\( \\text {mdim}_{\\text {M}}(\\mathbb {M}, f) (\\rho )= \\text {mdim}_{\\text {M}} (\\mathbb {M},\\rho , f)\\)</span> and <span>\\( \\text {mdim}_{\\text {H}}(\\mathbb {M}, f) (\\rho )= \\text {mdim}_{\\text {H}} (\\mathbb {M},\\rho , f)\\)</span> for any <span>\\(\\rho \\in \\mathbb {M}(\\tau )\\)</span>. Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"31 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric\",\"authors\":\"J. Muentes, A. J. Becker, A. T. Baraviera, É. Scopel\",\"doi\":\"10.1007/s12346-024-01100-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(f:\\\\mathbb {M}\\\\rightarrow \\\\mathbb {M}\\\\)</span> be a continuous map on a compact metric space <span>\\\\(\\\\mathbb {M}\\\\)</span> equipped with a fixed metric <i>d</i>, and let <span>\\\\(\\\\tau \\\\)</span> be the topology on <span>\\\\(\\\\mathbb {M}\\\\)</span> induced by <i>d</i>. We denote by <span>\\\\(\\\\mathbb {M}(\\\\tau )\\\\)</span> the set consisting of all metrics on <span>\\\\(\\\\mathbb {M}\\\\)</span> that are equivalent to <i>d</i>. Let <span>\\\\( \\\\text {mdim}_{\\\\text {M}}(\\\\mathbb {M},d, f)\\\\)</span> and <span>\\\\( \\\\text {mdim}_{\\\\text {H}} (\\\\mathbb {M},d, f)\\\\)</span> be, respectively, the metric mean dimension and mean Hausdorff dimension of <i>f</i>. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that <span>\\\\( \\\\text {mdim}_{\\\\text {M}}(\\\\mathbb {M},d, f)\\\\)</span> and <span>\\\\( \\\\text {mdim}_{\\\\text {H}} (\\\\mathbb {M},d, f)\\\\)</span> depend on the metric <i>d</i> chosen for <span>\\\\(\\\\mathbb {M}\\\\)</span>. In this work, we will prove that, for a fixed dynamical system <span>\\\\(f:\\\\mathbb {M}\\\\rightarrow \\\\mathbb {M}\\\\)</span>, the functions <span>\\\\(\\\\text {mdim}_{\\\\text {M}} (\\\\mathbb {M}, f):\\\\mathbb {M}(\\\\tau )\\\\rightarrow \\\\mathbb {R}\\\\cup \\\\{\\\\infty \\\\}\\\\)</span> and <span>\\\\( \\\\text {mdim}_{\\\\text {H}}(\\\\mathbb {M}, f): \\\\mathbb {M}(\\\\tau )\\\\rightarrow \\\\mathbb {R}\\\\cup \\\\{\\\\infty \\\\}\\\\)</span> are not continuous, where <span>\\\\( \\\\text {mdim}_{\\\\text {M}}(\\\\mathbb {M}, f) (\\\\rho )= \\\\text {mdim}_{\\\\text {M}} (\\\\mathbb {M},\\\\rho , f)\\\\)</span> and <span>\\\\( \\\\text {mdim}_{\\\\text {H}}(\\\\mathbb {M}, f) (\\\\rho )= \\\\text {mdim}_{\\\\text {H}} (\\\\mathbb {M},\\\\rho , f)\\\\)</span> for any <span>\\\\(\\\\rho \\\\in \\\\mathbb {M}(\\\\tau )\\\\)</span>. Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01100-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01100-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(f:\mathbb {M}\rightarrow \mathbb {M}\) 是一个紧凑度量空间 \(\mathbb {M}\) 上的连续映射,配备一个固定度量 d,并让(\tau \)是 d 在 \(\mathbb {M}\) 上诱导的拓扑。我们用 \(\mathbb {M}(\tau )\) 表示由 \(\mathbb {M}) 上所有等价于 d 的度量组成的集合。让 \( ( \text {mdim}_{text {M}}(\mathbb {M},d,f)\) 和 \( ( \text {mdim}_{\text {H}}(\mathbb {M},d, f)\) 分别是 f 的度量平均维度和平均豪斯多夫维度。首先,我们将建立平均豪斯多夫维度的一些基本性质。此外,需要注意的是:( ( \text {mdim}_{\text {M}}(\mathbb {M},d, f)\) 和 ( ( \text {mdim}_{\text {H}}(\mathbb {M},d, f)\)取决于为 \(\mathbb {M}\) 选择的度量 d。在这项工作中,我们将证明,对于一个固定的动力系统 (f:\mathbb {M}\rightarrow \mathbb {M}),函数 (\text {mdim}_{\text {M}}(\mathbb {M}, f):\mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \\{infty \})和( \text {mdim}_{\text {H}}(\mathbb {M}, f):\(\text {mdim}_{\text {M}(\tau )\rightarrow \mathbb {R}\cup \{infty \}\)都是不连续的,其中( ( \text {mdim}_{\text {M}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {M}}(\mathbb {M},\rho , f)\) and ( ( \text {mdim}_{text {H}}(\mathbb {M}, f) (\rho )= \text {mdim}_{text {H}}(\mathbb {M},\rho , f)\) for any \(\rho \in \mathbb {M}(\tau )\).此外,我们还将举例说明度量平均维度是连续函数的某些度量类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

Let \(f:\mathbb {M}\rightarrow \mathbb {M}\) be a continuous map on a compact metric space \(\mathbb {M}\) equipped with a fixed metric d, and let \(\tau \) be the topology on \(\mathbb {M}\) induced by d. We denote by \(\mathbb {M}(\tau )\) the set consisting of all metrics on \(\mathbb {M}\) that are equivalent to d. Let \( \text {mdim}_{\text {M}}(\mathbb {M},d, f)\) and \( \text {mdim}_{\text {H}} (\mathbb {M},d, f)\) be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that \( \text {mdim}_{\text {M}}(\mathbb {M},d, f)\) and \( \text {mdim}_{\text {H}} (\mathbb {M},d, f)\) depend on the metric d chosen for \(\mathbb {M}\). In this work, we will prove that, for a fixed dynamical system \(f:\mathbb {M}\rightarrow \mathbb {M}\), the functions \(\text {mdim}_{\text {M}} (\mathbb {M}, f):\mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}\) and \( \text {mdim}_{\text {H}}(\mathbb {M}, f): \mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}\) are not continuous, where \( \text {mdim}_{\text {M}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {M}} (\mathbb {M},\rho , f)\) and \( \text {mdim}_{\text {H}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {H}} (\mathbb {M},\rho , f)\) for any \(\rho \in \mathbb {M}(\tau )\). Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信