一类非线性二阶问题的同线性解的存在性

IF 1.9 3区 数学 Q1 MATHEMATICS
Wei Yang, Ruyun Ma
{"title":"一类非线性二阶问题的同线性解的存在性","authors":"Wei Yang, Ruyun Ma","doi":"10.1007/s12346-024-01114-9","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the existence of homoclinic solutions for the nonlinear problems </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} u''+\\omega u'-ku=f(t,u,u'),\\ \\ t\\in \\mathbb {R},\\\\ \\lim \\limits _{|t|\\rightarrow +\\infty }u(t)=0, \\end{array} \\right. \\end{aligned}$$</span>(P)<p>where <span>\\(\\omega \\in \\mathbb {R},~k&gt;0\\)</span> are real constants, and <span>\\(f: \\mathbb {R}^{3}\\rightarrow \\mathbb {R}\\)</span> is an <span>\\(L^{1}-\\)</span>Carathéodory function. Under some suitable conditions, the existence of homoclinic solutions for problem (P) and the corresponding coupled systems are provided. The proofs of the main results are based on the method of upper and lower solutions.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"2 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Homoclinic Solutions for a Class of Nonlinear Second-order Problems\",\"authors\":\"Wei Yang, Ruyun Ma\",\"doi\":\"10.1007/s12346-024-01114-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the existence of homoclinic solutions for the nonlinear problems </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} u''+\\\\omega u'-ku=f(t,u,u'),\\\\ \\\\ t\\\\in \\\\mathbb {R},\\\\\\\\ \\\\lim \\\\limits _{|t|\\\\rightarrow +\\\\infty }u(t)=0, \\\\end{array} \\\\right. \\\\end{aligned}$$</span>(P)<p>where <span>\\\\(\\\\omega \\\\in \\\\mathbb {R},~k&gt;0\\\\)</span> are real constants, and <span>\\\\(f: \\\\mathbb {R}^{3}\\\\rightarrow \\\\mathbb {R}\\\\)</span> is an <span>\\\\(L^{1}-\\\\)</span>Carathéodory function. Under some suitable conditions, the existence of homoclinic solutions for problem (P) and the corresponding coupled systems are provided. The proofs of the main results are based on the method of upper and lower solutions.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01114-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01114-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们关注的是非线性问题 $$\begin{aligned} 的同轴解的存在性\u'-ku=f(t,u,u'),tin mathbb {R},limlimits _{|t|rightarrow +\infty }u(t)=0, end{array}\right.\end{aligned}$$(P)where \(\omega \in \mathbb {R},~k>0\) are real constants, and \(f: \mathbb {R}^{3}\rightarrow \mathbb {R}\) is an \(L^{1}-\)Carathéodory function.在一些合适的条件下,提供了问题(P)和相应耦合系统的同轴解的存在性。主要结果的证明基于上解和下解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence of Homoclinic Solutions for a Class of Nonlinear Second-order Problems

Existence of Homoclinic Solutions for a Class of Nonlinear Second-order Problems

We are concerned with the existence of homoclinic solutions for the nonlinear problems

$$\begin{aligned} \left\{ \begin{array}{ll} u''+\omega u'-ku=f(t,u,u'),\ \ t\in \mathbb {R},\\ \lim \limits _{|t|\rightarrow +\infty }u(t)=0, \end{array} \right. \end{aligned}$$(P)

where \(\omega \in \mathbb {R},~k>0\) are real constants, and \(f: \mathbb {R}^{3}\rightarrow \mathbb {R}\) is an \(L^{1}-\)Carathéodory function. Under some suitable conditions, the existence of homoclinic solutions for problem (P) and the corresponding coupled systems are provided. The proofs of the main results are based on the method of upper and lower solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信