带亚线性和超线性项的二阶非正则延迟微分方程:通过佳能变换和算术几何不等式的新振荡标准

IF 1.9 3区 数学 Q1 MATHEMATICS
Ganesh Purushothaman, Kannan Suresh, Ethiraju Thandapani, Ercan Tunç
{"title":"带亚线性和超线性项的二阶非正则延迟微分方程:通过佳能变换和算术几何不等式的新振荡标准","authors":"Ganesh Purushothaman, Kannan Suresh, Ethiraju Thandapani, Ercan Tunç","doi":"10.1007/s12346-024-01130-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the authors present new oscillation criteria for the noncanonical second-order delay differential equation with mixed nonlinearities </p><span>$$\\begin{aligned} (a(t)x^{\\prime }(t))^{\\prime }+ \\sum _{j=1}^{n} q_{j}(t) x^{\\alpha _{j}}(\\sigma _{j}(t))=0 \\end{aligned}$$</span><p>using an arithmetic–geometric mean inequality. We establish our results first by transforming the studied equation into canonical form and then applying a comparison technique and integral averaging method to get new oscillation criteria. Examples are provided to illustrate the importance and novelty of their main results.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"2 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second-Order Noncanonical Delay Differential Equations with Sublinear and Superlinear Terms: New Oscillation Criteria via Canonical Transform and Arithmetic–Geometric Inequality\",\"authors\":\"Ganesh Purushothaman, Kannan Suresh, Ethiraju Thandapani, Ercan Tunç\",\"doi\":\"10.1007/s12346-024-01130-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the authors present new oscillation criteria for the noncanonical second-order delay differential equation with mixed nonlinearities </p><span>$$\\\\begin{aligned} (a(t)x^{\\\\prime }(t))^{\\\\prime }+ \\\\sum _{j=1}^{n} q_{j}(t) x^{\\\\alpha _{j}}(\\\\sigma _{j}(t))=0 \\\\end{aligned}$$</span><p>using an arithmetic–geometric mean inequality. We establish our results first by transforming the studied equation into canonical form and then applying a comparison technique and integral averaging method to get new oscillation criteria. Examples are provided to illustrate the importance and novelty of their main results.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01130-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01130-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中、(a(t)x^{\prime }(t))^{\prime }+ \sum _{j=1}^{n} q_{j}(t) x^{alpha _{j}}(\sigma _{j}(t))=0 \end{aligned}$$。我们首先将所研究的方程转化为规范形式,然后应用比较技术和积分平均法得到新的振荡准则,从而建立我们的结果。我们举例说明了主要结果的重要性和新颖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-Order Noncanonical Delay Differential Equations with Sublinear and Superlinear Terms: New Oscillation Criteria via Canonical Transform and Arithmetic–Geometric Inequality

In this paper, the authors present new oscillation criteria for the noncanonical second-order delay differential equation with mixed nonlinearities

$$\begin{aligned} (a(t)x^{\prime }(t))^{\prime }+ \sum _{j=1}^{n} q_{j}(t) x^{\alpha _{j}}(\sigma _{j}(t))=0 \end{aligned}$$

using an arithmetic–geometric mean inequality. We establish our results first by transforming the studied equation into canonical form and then applying a comparison technique and integral averaging method to get new oscillation criteria. Examples are provided to illustrate the importance and novelty of their main results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信