一种具有焦点-焦点型基本中心的片断平滑微分系统的极限循环分岔

IF 1.9 3区 数学 Q1 MATHEMATICS
Zheng Si, Liqin Zhao
{"title":"一种具有焦点-焦点型基本中心的片断平滑微分系统的极限循环分岔","authors":"Zheng Si, Liqin Zhao","doi":"10.1007/s12346-024-01138-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the number of limit cycles <i>H</i>(<i>n</i>) bifurcating from the piecewise smooth system formed by the quadratic reversible system (r22) for <span>\\(y\\ge 0\\)</span> and the cubic system <span>\\({\\dot{x}} =y\\bigl (1+{{\\bar{x}}}^2+y^2\\bigr )\\)</span>, <span>\\({\\dot{y}} =-{\\bar{x}}\\bigl (1+{{\\bar{x}}}^2+y^2\\bigr )\\)</span> for <span>\\(y&lt;0\\)</span> under the perturbations of polynomials with degree <i>n</i>, where <span>\\({{\\bar{x}}}=x-1\\)</span>. By using the first-order Melnikov function, it is proved that <span>\\(2n+3\\le H(n)\\le 2n+ 7\\)</span> for <span>\\(n\\ge 3\\)</span> and the results are sharp for <span>\\(n=0,1,2\\)</span>.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation of Limit Cycles for a Kind of Piecewise Smooth Differential Systems with an Elementary Center of Focus-Focus Type\",\"authors\":\"Zheng Si, Liqin Zhao\",\"doi\":\"10.1007/s12346-024-01138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the number of limit cycles <i>H</i>(<i>n</i>) bifurcating from the piecewise smooth system formed by the quadratic reversible system (r22) for <span>\\\\(y\\\\ge 0\\\\)</span> and the cubic system <span>\\\\({\\\\dot{x}} =y\\\\bigl (1+{{\\\\bar{x}}}^2+y^2\\\\bigr )\\\\)</span>, <span>\\\\({\\\\dot{y}} =-{\\\\bar{x}}\\\\bigl (1+{{\\\\bar{x}}}^2+y^2\\\\bigr )\\\\)</span> for <span>\\\\(y&lt;0\\\\)</span> under the perturbations of polynomials with degree <i>n</i>, where <span>\\\\({{\\\\bar{x}}}=x-1\\\\)</span>. By using the first-order Melnikov function, it is proved that <span>\\\\(2n+3\\\\le H(n)\\\\le 2n+ 7\\\\)</span> for <span>\\\\(n\\\\ge 3\\\\)</span> and the results are sharp for <span>\\\\(n=0,1,2\\\\)</span>.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01138-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01138-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由\(y\ge 0\) 的二次可逆系统 (r22) 和三次系统 \({\dot{x}} =y\bigl (1+{{\bar{x}}^2+y^2\bigr )\)形成的片断平稳系统分叉的极限循环 H(n) 的数量、)\({\dot{y}} =-{\bar{x}}\bigl (1+{\bar{x}}^2+y^2\bigr )\) for \(y<;0)在阶数为 n 的多项式的扰动下,其中 \({{\bar{x}}=x-1\).通过使用一阶梅利尼科夫函数,证明了对于(nge 3),(2n+3le H(n)\le 2n+7),并且对于(n=0,1,2),结果是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation of Limit Cycles for a Kind of Piecewise Smooth Differential Systems with an Elementary Center of Focus-Focus Type

In this paper, we study the number of limit cycles H(n) bifurcating from the piecewise smooth system formed by the quadratic reversible system (r22) for \(y\ge 0\) and the cubic system \({\dot{x}} =y\bigl (1+{{\bar{x}}}^2+y^2\bigr )\), \({\dot{y}} =-{\bar{x}}\bigl (1+{{\bar{x}}}^2+y^2\bigr )\) for \(y<0\) under the perturbations of polynomials with degree n, where \({{\bar{x}}}=x-1\). By using the first-order Melnikov function, it is proved that \(2n+3\le H(n)\le 2n+ 7\) for \(n\ge 3\) and the results are sharp for \(n=0,1,2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信