{"title":"超过 $${\\mathbb {F}}_qtimes ({\\mathbb {F}}_q+v{\\mathbb {F}}_q)$$ 的线性编码的麦克威廉斯特性","authors":"Mevlüt Tekkoyun, Ergün Yaraneri","doi":"10.1007/s40840-024-01760-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>R</i> be the <span>\\({\\mathbb {F}}_q\\)</span>-algebra <span>\\({\\mathbb {F}}_q\\times ({\\mathbb {F}}_q+v{\\mathbb {F}}_q)\\)</span> of order <span>\\(q^3\\)</span> where <span>\\(v^2=v\\)</span> and <span>\\({\\mathbb {F}}_q\\)</span> is a finite field of <i>q</i> elements. We study the MacWilliams identities of the linear codes over <i>R</i> related to complete, Hamming, symmetric, Gray and Lee weight enumerators.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"294 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MacWilliams Identities of the Linear Codes Over $${\\\\mathbb {F}}_q\\\\times ({\\\\mathbb {F}}_q+v{\\\\mathbb {F}}_q)$$\",\"authors\":\"Mevlüt Tekkoyun, Ergün Yaraneri\",\"doi\":\"10.1007/s40840-024-01760-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>R</i> be the <span>\\\\({\\\\mathbb {F}}_q\\\\)</span>-algebra <span>\\\\({\\\\mathbb {F}}_q\\\\times ({\\\\mathbb {F}}_q+v{\\\\mathbb {F}}_q)\\\\)</span> of order <span>\\\\(q^3\\\\)</span> where <span>\\\\(v^2=v\\\\)</span> and <span>\\\\({\\\\mathbb {F}}_q\\\\)</span> is a finite field of <i>q</i> elements. We study the MacWilliams identities of the linear codes over <i>R</i> related to complete, Hamming, symmetric, Gray and Lee weight enumerators.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"294 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01760-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01760-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
MacWilliams Identities of the Linear Codes Over $${\mathbb {F}}_q\times ({\mathbb {F}}_q+v{\mathbb {F}}_q)$$
Let R be the \({\mathbb {F}}_q\)-algebra \({\mathbb {F}}_q\times ({\mathbb {F}}_q+v{\mathbb {F}}_q)\) of order \(q^3\) where \(v^2=v\) and \({\mathbb {F}}_q\) is a finite field of q elements. We study the MacWilliams identities of the linear codes over R related to complete, Hamming, symmetric, Gray and Lee weight enumerators.
期刊介绍:
This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.