草图-选择-阿诺德工艺

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Stefan Güttel, Igor Simunec
{"title":"草图-选择-阿诺德工艺","authors":"Stefan Güttel, Igor Simunec","doi":"10.1137/23m1588007","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2774-A2797, August 2024. <br/> Abstract. A sketch-and-select Arnoldi process to generate a well-conditioned basis of a Krylov space at low cost is proposed. At each iteration the procedure utilizes randomized sketching to select a limited number of previously computed basis vectors to project out of the current basis vector. The computational cost grows linearly with the dimension of the Krylov space. The subset selection problem for the projection step is approximately solved with a number of heuristic algorithms and greedy methods used in statistical learning and compressive sensing. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/simunec/sketch-select-arnoldi and in the supplementary materials (sketch-select-arnoldi-main.zip [2.21MB]).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sketch-and-Select Arnoldi Process\",\"authors\":\"Stefan Güttel, Igor Simunec\",\"doi\":\"10.1137/23m1588007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2774-A2797, August 2024. <br/> Abstract. A sketch-and-select Arnoldi process to generate a well-conditioned basis of a Krylov space at low cost is proposed. At each iteration the procedure utilizes randomized sketching to select a limited number of previously computed basis vectors to project out of the current basis vector. The computational cost grows linearly with the dimension of the Krylov space. The subset selection problem for the projection step is approximately solved with a number of heuristic algorithms and greedy methods used in statistical learning and compressive sensing. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/simunec/sketch-select-arnoldi and in the supplementary materials (sketch-select-arnoldi-main.zip [2.21MB]).\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1588007\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1588007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2774-A2797 页,2024 年 8 月。 摘要。本文提出了一种 "草图-选择阿诺德过程"(sketch-and-select Arnoldi process),以低成本生成条件良好的克雷洛夫空间基。在每次迭代时,该过程利用随机草图选择有限数量的先前计算的基向量,以投影出当前的基向量。计算成本与克雷洛夫空间的维度呈线性增长。投影步骤的子集选择问题可以通过统计学习和压缩传感中使用的一些启发式算法和贪婪方法近似解决。计算结果的可重复性。本文被授予 "SIAM 可重现徽章":代码和数据可用",以表彰作者遵循了 SISC 和科学计算界重视的可重现性原则。读者可以通过 https://github.com/simunec/sketch-select-arnoldi 和补充材料(sketch-select-arnoldi-main.zip [2.21MB])中的代码和数据重现本文的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sketch-and-Select Arnoldi Process
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2774-A2797, August 2024.
Abstract. A sketch-and-select Arnoldi process to generate a well-conditioned basis of a Krylov space at low cost is proposed. At each iteration the procedure utilizes randomized sketching to select a limited number of previously computed basis vectors to project out of the current basis vector. The computational cost grows linearly with the dimension of the Krylov space. The subset selection problem for the projection step is approximately solved with a number of heuristic algorithms and greedy methods used in statistical learning and compressive sensing. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/simunec/sketch-select-arnoldi and in the supplementary materials (sketch-select-arnoldi-main.zip [2.21MB]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信