{"title":"漩涡灌浆技术的水泥浆渗透行为","authors":"Weiqun Liang, Xiaobin Chen, Lubo Tang, Jiasheng Zhang, Xinxin Zhang, Fantong Lin, Jun Cheng","doi":"10.1063/5.0225944","DOIUrl":null,"url":null,"abstract":"Traditional pressure grouting technology operates under steady pressure conditions, causing the grout to easily flow along preferential pathways. This results in uneven grout penetration and increased economic costs. This study proposes swirl grouting technology, which effectively improves this problem. To verify the effectiveness of swirl grouting, a fan-shaped blade tool was also proposed. The grout penetration performance was investigated through experimental studies. The length, width, height, weight, and uniformity of the grouted bodies produced by the swirl grouting method were compared with those produced by the steady pressure grouting method. Then, the mechanisms of swirl grouting were analyzed through transparent disc visualization experiments. The results demonstrated that, at different water–cement ratios, the swirl device increased the penetration length in the X, Y, and Z directions by 43.3%, 27.8%, and 45.8%, respectively, compared to the conventional straight device, and by 57.3%, 39.4%, and 55.6%, respectively, compared to the fan blade device. Moreover, the swirl device increased the weight of the grouted stone body by 54.9% compared to the conventional straight device and by 91.0% compared to the fan blade device, significantly enhancing filling efficiency. The uniformity coefficient of the swirl device permeation decreased by 56.6% and 51.0%, respectively, compared to the conventional straight device and the fan blade device, resulting in a more uniform grout distribution. The transparent disc visualization experiment further revealed the advantage of the swirl device in promoting the migration of fine particles, with a significant increase in average penetration distance and a penetration shape closer to a regular circle. The rotating flow path of the swirl device imparts additional rotational momentum and multidirectional penetration capabilities. The resulting turbulence accelerates the mixing of grout with the soil matrix, facilitating the migration of fine particles, expanding flow channels, and reducing flow resistance. This combination of effects enhances penetration efficiency and reduces energy loss. This study offers significant practical application value for improving engineering quality, construction efficiency, and reducing costs.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cement slurry penetration behavior of swirl grouting technology\",\"authors\":\"Weiqun Liang, Xiaobin Chen, Lubo Tang, Jiasheng Zhang, Xinxin Zhang, Fantong Lin, Jun Cheng\",\"doi\":\"10.1063/5.0225944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional pressure grouting technology operates under steady pressure conditions, causing the grout to easily flow along preferential pathways. This results in uneven grout penetration and increased economic costs. This study proposes swirl grouting technology, which effectively improves this problem. To verify the effectiveness of swirl grouting, a fan-shaped blade tool was also proposed. The grout penetration performance was investigated through experimental studies. The length, width, height, weight, and uniformity of the grouted bodies produced by the swirl grouting method were compared with those produced by the steady pressure grouting method. Then, the mechanisms of swirl grouting were analyzed through transparent disc visualization experiments. The results demonstrated that, at different water–cement ratios, the swirl device increased the penetration length in the X, Y, and Z directions by 43.3%, 27.8%, and 45.8%, respectively, compared to the conventional straight device, and by 57.3%, 39.4%, and 55.6%, respectively, compared to the fan blade device. Moreover, the swirl device increased the weight of the grouted stone body by 54.9% compared to the conventional straight device and by 91.0% compared to the fan blade device, significantly enhancing filling efficiency. The uniformity coefficient of the swirl device permeation decreased by 56.6% and 51.0%, respectively, compared to the conventional straight device and the fan blade device, resulting in a more uniform grout distribution. The transparent disc visualization experiment further revealed the advantage of the swirl device in promoting the migration of fine particles, with a significant increase in average penetration distance and a penetration shape closer to a regular circle. The rotating flow path of the swirl device imparts additional rotational momentum and multidirectional penetration capabilities. The resulting turbulence accelerates the mixing of grout with the soil matrix, facilitating the migration of fine particles, expanding flow channels, and reducing flow resistance. This combination of effects enhances penetration efficiency and reduces energy loss. This study offers significant practical application value for improving engineering quality, construction efficiency, and reducing costs.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0225944\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0225944","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Cement slurry penetration behavior of swirl grouting technology
Traditional pressure grouting technology operates under steady pressure conditions, causing the grout to easily flow along preferential pathways. This results in uneven grout penetration and increased economic costs. This study proposes swirl grouting technology, which effectively improves this problem. To verify the effectiveness of swirl grouting, a fan-shaped blade tool was also proposed. The grout penetration performance was investigated through experimental studies. The length, width, height, weight, and uniformity of the grouted bodies produced by the swirl grouting method were compared with those produced by the steady pressure grouting method. Then, the mechanisms of swirl grouting were analyzed through transparent disc visualization experiments. The results demonstrated that, at different water–cement ratios, the swirl device increased the penetration length in the X, Y, and Z directions by 43.3%, 27.8%, and 45.8%, respectively, compared to the conventional straight device, and by 57.3%, 39.4%, and 55.6%, respectively, compared to the fan blade device. Moreover, the swirl device increased the weight of the grouted stone body by 54.9% compared to the conventional straight device and by 91.0% compared to the fan blade device, significantly enhancing filling efficiency. The uniformity coefficient of the swirl device permeation decreased by 56.6% and 51.0%, respectively, compared to the conventional straight device and the fan blade device, resulting in a more uniform grout distribution. The transparent disc visualization experiment further revealed the advantage of the swirl device in promoting the migration of fine particles, with a significant increase in average penetration distance and a penetration shape closer to a regular circle. The rotating flow path of the swirl device imparts additional rotational momentum and multidirectional penetration capabilities. The resulting turbulence accelerates the mixing of grout with the soil matrix, facilitating the migration of fine particles, expanding flow channels, and reducing flow resistance. This combination of effects enhances penetration efficiency and reduces energy loss. This study offers significant practical application value for improving engineering quality, construction efficiency, and reducing costs.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves